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Supplementary Material (SM) 

A: SLTORC Governing Equa�ons in Lagrangian Coordinates 
 

SLTORC solves the governing reacting flow equations in Lagrangian coordinates. Lagrangian 
coordinates have been used in previous studies to eliminate numerical difficulties arising from the 
non-linear advective term in the energy and species equations when expressed in Eulerian 
coordinates [1]. The governing equations for mass, energy, and species conservation expressed in 
Lagrangian coordinates are listed as Eqns. (1)-(3), respectively.  Table S1 provides a description 
of the nomenclature chosen for variables in these equations. 

 

Table S1. Variable nomenclature for governing SLTORC equations in Lagrangian coordinates. 

𝑡𝑡 Time 𝑐𝑐𝑝𝑝 Species heat at constant pressure 
𝑟𝑟 Spatial coordinate �̇�𝑚 Mass flux out of the system 
𝜓𝜓 Lagrangian coordinate 𝜆𝜆 Thermal conductivity 
𝜌𝜌 Density 𝐴𝐴 Surface area 
𝑉𝑉 Volume 𝑐𝑐𝑝𝑝,𝑘𝑘 Species heat of species 𝑘𝑘 
𝑇𝑇 Temperature 𝐷𝐷𝑘𝑘 Diffusion coefficient of species 𝑘𝑘 
𝑌𝑌𝑘𝑘 Mass fraction of species 𝑘𝑘 �̇�𝜔𝑘𝑘 Volumetric production rate of species 𝑘𝑘 
𝑀𝑀 Total mass of the system ∆ℎ𝑓𝑓,𝑘𝑘

0  Standard enthalpy of formation of species 𝑘𝑘 
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Species Conserva�on 
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In Eqns. (1)-(3), 𝑉𝑉 and 𝐴𝐴 are functions of 𝑟𝑟 and the metric factor 𝛼𝛼 depending on the configuration 
geometry (𝛼𝛼 = 0 for planar, 𝛼𝛼 = 1 for cylindrical, 𝛼𝛼 = 2 for spherical). These relationships for 𝑉𝑉 
and 𝐴𝐴 are given in Eqns. (4) and (5), respectively.  

 

𝑉𝑉 = 𝑓𝑓(𝛼𝛼)𝑟𝑟𝛼𝛼+1 (4) 

𝐴𝐴 =
𝜕𝜕𝑉𝑉
𝜕𝜕𝑟𝑟

= 𝑓𝑓(𝛼𝛼)1−𝛽𝛽(𝛼𝛼 + 1)𝑉𝑉𝛽𝛽 (5) 

 

where 𝑓𝑓(𝛼𝛼 = 0) = 1, 𝑓𝑓(𝛼𝛼 = 1) = 𝜋𝜋, 𝑓𝑓(𝛼𝛼 = 2) = 4
3
𝜋𝜋, and 𝛽𝛽 = 𝛼𝛼
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B: SLTORC Deriva�on of 𝑆𝑆𝑢𝑢0 and Comparison with Cantera Results 
 

Freely propagating, planar CH4/air flames with 𝑃𝑃 = 1 atm, and 𝑇𝑇𝑢𝑢 = 300 K varying 𝜑𝜑 were 
conducted in SLTORC assuming adiabatic conditions. The FFCM-1 chemical model [2] was used 
in all CH4/air planar flame simulations. The flames were allowed to propagate until steady-state 
was reached, at which the flame propagation speed 𝑑𝑑𝑥𝑥𝑓𝑓 𝑑𝑑𝑡𝑡⁄  reached a constant value such that 
𝑑𝑑𝑥𝑥𝑓𝑓 𝑑𝑑𝑡𝑡⁄  = 𝑆𝑆𝑏𝑏0. In Fig. S1, values for 𝑆𝑆𝑢𝑢0 varying 𝜑𝜑 were derived by multiplying 𝑆𝑆𝑏𝑏0 by the density 
ratio according to Eq. (6). 
 

𝑆𝑆𝑢𝑢0 = �
𝜌𝜌𝑏𝑏
𝜌𝜌𝑢𝑢
� 𝑆𝑆𝑏𝑏0 (6) 

 
Here, 𝜌𝜌𝑢𝑢 is the density of the unburned gas mixture and 𝜌𝜌𝑏𝑏 is the density of the burned gas mixture, 
where 𝜌𝜌𝑏𝑏 is approximated as the density of the equilibrated mixture (𝜌𝜌𝑎𝑎𝑎𝑎) at 𝑇𝑇𝑎𝑎𝑎𝑎. It is important to 
note that 𝜌𝜌𝑏𝑏 is not uniquely defined for flames affected by radiation heat loss, as 𝜌𝜌𝑏𝑏 varies along 
the burned gas and is always greater than 𝜌𝜌𝑎𝑎𝑎𝑎. However, Eq. (6) is appropriate to use when 
assuming adiabatic conditions. Derived values for 𝑆𝑆𝑢𝑢0 from SLTORC were also compared to 𝑆𝑆𝑢𝑢0 
computed from steady, planar flames simulated with Cantera at the same unburned gas conditions, 
shown in Fig. S1. Results for 𝑆𝑆𝑢𝑢0 varying 𝜑𝜑 are shown to agree very well between SLTORC and 
Cantera, with differences smaller than 0.8% across all cases. 

 

 

Fig. S1. 𝑆𝑆𝑢𝑢0 vs. 𝜑𝜑 for simulated planar, CH4/air flames with 𝑃𝑃 = 1 atm and 𝑇𝑇𝑢𝑢 = 300 K. Solid 
markers indicate the value of 𝜑𝜑 used in simulations. 
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C: SLTORC SEF Parameter Descrip�ons and Solu�on Convergence 
 

Basilisk and the Adap�ve Grid Refinement Algorithm 
 

Adaptive grid refinement in SLTORC is performed through a wavelet-estimated discretization 
error method within the finite-volume partial-differential-equation solver Basilisk [3]. This 
adaptive wavelet algorithm (“Adapt Wavelet”) is based around the estimation of numerical errors 
in the representation of spatially-discretized fields [4]. The algorithm first requires a list of 
variables to analyze for grid refinement/coarsening. The variables used in adaptive grid refinement 
in SLTORC include temperature (T), the first derivative of temperature (GradT), and the second 
derivative of temperature (CurveT). The algorithm utilizes a tree-based grid (i.e. a quadtree), 
whose structure introduces a hierarchy between cells at integer levels of refinement, referred to as 
the parameter “LEVEL”. The solver allows neighboring cells to vary up to one level, where grid 
resolution differs by a factor of two between levels of refinement. Additionally, the maximum 
tolerated error, referred to as the parameter “TError,” is defined for each input variable. Finally, a 
maximum level parameter controls the upper limit for grid refinement, referred to as 
“MaxLEVEL.” For a sufficiently defined value for TError (TError < 0.1), MaxLEVEL becomes 
the major controlling parameter for specifying grid refinement. The use of these parameters in the 
test case described below can be found in Table S2. A more detailed description of the quadtree-
adaptive multigrid solver is provided by Popinet [3], and a more detailed description of the 
wavelet-estimated discretization error method is provided by Van Hooft et al. [4]. 

 

Igni�on Kernal Ini�aliza�on and Flame Radius Tracking 
 

The ignition energy for SLTORC simulations was controlled primarily through the parameters 
“ignitionMassFraction” or 𝐼𝐼𝑀𝑀𝐼𝐼 and “Texcess” or 𝑇𝑇𝑒𝑒𝑒𝑒. 𝐼𝐼𝑀𝑀𝐼𝐼 is the fraction of the domain mass used 
for the burned gas kernel, while 𝑇𝑇𝑒𝑒𝑒𝑒 is the temperature added to the equilibrated kernel temperature 
(i.e., 𝑇𝑇𝑏𝑏 = 𝑇𝑇𝑎𝑎𝑎𝑎 + 𝑇𝑇𝑒𝑒𝑒𝑒). In addition, specifying the size of the initial kernel through 𝐼𝐼𝑀𝑀𝐼𝐼 is 
inherently dependent on the initial size of the domain through the parameter “domainLength” or 
𝐿𝐿𝑎𝑎. The chosen domain geometry, specified with the parameter “metricFac” (i.e., 𝛼𝛼 described 
above) determines how grid points of equal mass (i.e., material particles in the Lagrangian 
formulation) are initially distributed along the domain. For SEFs, the burned gas kernel radius 
(𝑅𝑅𝑓𝑓,0) and deposited ignition energy (𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖) are related to 𝐼𝐼𝑀𝑀𝐼𝐼, 𝐿𝐿𝑎𝑎, and 𝑇𝑇𝑏𝑏 through Eqns. (7) and 
(8), respectively.  

𝑅𝑅𝑓𝑓,0 = 𝑅𝑅𝑓𝑓,0(𝐼𝐼𝑀𝑀𝐼𝐼, 𝐿𝐿𝑎𝑎,𝑇𝑇𝑏𝑏) = 𝐿𝐿𝑎𝑎�
(𝐼𝐼𝑀𝑀𝐼𝐼)𝑀𝑀�𝑤𝑤,𝑢𝑢𝑇𝑇𝑏𝑏

𝑀𝑀�𝑤𝑤,𝑏𝑏𝑇𝑇𝑢𝑢

3
(7) 
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𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖�𝑅𝑅𝑓𝑓,0,𝑇𝑇𝑏𝑏� =
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𝑀𝑀�𝑤𝑤
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𝑇𝑇𝑏𝑏
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3 𝜌𝜌𝑏𝑏 �
𝑐𝑐𝑝𝑝,𝑏𝑏𝑇𝑇𝑏𝑏
𝑀𝑀�𝑤𝑤,𝑏𝑏

−
𝑐𝑐𝑝𝑝,𝑢𝑢𝑇𝑇𝑢𝑢
𝑀𝑀�𝑤𝑤,𝑢𝑢

� (8) 

In Eqns. (6) and (7), 𝑀𝑀�𝑤𝑤,𝑢𝑢 and 𝑀𝑀�𝑤𝑤,𝑏𝑏 are the mean molecular weights of the unburned and burned 
gas, respectively. For a specified value for 𝐿𝐿𝑎𝑎, 𝐼𝐼𝑀𝑀𝐼𝐼 was varied until the minimum 𝑅𝑅𝑓𝑓,0 for 
successful ignition of an adiabatic flame was determined, holding 𝑇𝑇𝑒𝑒𝑒𝑒 at 0 K. Afterwards, 𝑇𝑇𝑒𝑒𝑒𝑒 was 
increased for the corresponding radiative flame case until successful ignition was achieved for the 
specified 𝐼𝐼𝑀𝑀𝐼𝐼 and 𝐿𝐿𝑎𝑎.  

The evolution of the flame radius is tracked using a user-specified “isotherm” or 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖. A consistent 
value for the isotherm parameter was chosen after considering the relatively low burned gas 
temperatures at large 𝑅𝑅𝑓𝑓 in weakly propagating HFC/air flames due to significant radiative cooling. 
For example, the maximum flame temperature of a radiative R-1234yf/air SEF with 𝜑𝜑 =1.2, 𝑃𝑃 = 
1 atm, and 𝑇𝑇𝑢𝑢 = 400 K is approx. 1700 K. At 𝑅𝑅𝑓𝑓 = 3 cm, the temperature at the core of the burned 
gas had cooled to approx. 1300 K, and at 𝑅𝑅𝑓𝑓 = 6 cm the burned gas core temperature had cooled 
to approx. 1000 K. To prevent issues with 𝑅𝑅𝑓𝑓 tracking arising from significant radiative cooling in 
the burned gas, a temperature of 600 K was chosen for the isotherm parameter. Solution 
convergence tests varying the isotherm parameter were performed for R-32/air SEFs with 𝜑𝜑 =1.2, 
𝑃𝑃 = 1 atm, and 𝑇𝑇𝑢𝑢 = 300 K assuming adiabatic conditions. As shown in Fig. S2, varying the 
isotherm parameter between 600-1400K had a negligible effect on the evolution of 𝑆𝑆𝑏𝑏 vs. 𝑅𝑅𝑓𝑓 once 
quasi-steady propagation was achieved.  

 

 

Fig. S2: 𝑆𝑆𝑏𝑏 vs. 𝑅𝑅𝑓𝑓 varying 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 for a spherically expanding R-32/air flame with 𝜑𝜑 =1.2, 𝑃𝑃 = 1 atm, 
and 𝑇𝑇𝑢𝑢 = 300 K assuming adiabatic conditions. 
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Convergence Test Varying Spa�al and Temporal Refinement 
 

Solution convergence tests were performed for spherically-expanding R-32/air flames simulated 
in SLTORC, varying the major spatial refinement criteria (MaxLEVEL) and temporal refinement 
criteria (dt). Results for a sample solution convergence test are provided below in Figs. S3-S4.  

Test Case: 

• R-32/air Spherical Flame 
• Adiabatic 
• 𝜑𝜑 = 1.2, 𝑃𝑃 = 1 atm, 𝑇𝑇𝑢𝑢 = 300 K 

 

Table S2. Selected SLTORC Input Parameters. 

Parameter Value Description 
pAmbient 1.0 Ambient pressure <atm> 
TAmbient 300.0 Unburned gas temperature 

<K> 
comp CH2F2:1.2, O2:1.0, N2:3.76 Mole fractions of unburned 

gas species 
TExcess 0.0 Excess temperature <K> 

added to adiabatic flame 
temperature of initial burned 
gas kernel 

ignitionMassFraction 5.0e-4 Fraction of domain mass 
equilibrated for initial burned 
gas kernel 

ignitionFlameThickness 0.05 Fraction of domain mass used 
for hyperbolic tangent region 
between burned and unburned 
gas 

radiation false Switch for turning OTL 
radiation calculation on/off 

domainLength 0.02 Length of domain <m> 
metricFac 2 Metric Factor (0 for planar, 1 

for cylindrical, 2 for 
spherical) 

maxLEVEL 12, 13, 14, 15, 16 Maximum allowable Level 
for adaptive grid refinement 

TError 0.1 Maximum error criterion for 
adaptive grid 

dt 5e-7, 1e-6, 2e-6, 4e-6 Time step size <s> 
isotherm 600.0 Isotherm temperature for 

tracking 𝑅𝑅𝑓𝑓 <K> 
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Fig. S3: 𝑆𝑆𝑏𝑏 vs. 𝑅𝑅𝑓𝑓 varying MaxLevel for a spherically expanding R-32/air flame with 𝜑𝜑 =1.2, 𝑃𝑃 = 
1 atm, and 𝑇𝑇𝑢𝑢 = 300 K assuming adiabatic conditions. A consistent value of dt = 1e-6 was used in 
each case. 

 

 

Fig. S4. 𝑆𝑆𝑏𝑏 vs. 𝑅𝑅𝑓𝑓 varying dt for a spherically expanding R-32/air flame with 𝜑𝜑 =1.2, 𝑃𝑃 = 1 atm, 
and 𝑇𝑇𝑢𝑢 = 300 K assuming adiabatic conditions. A consistent value of MaxLevel = 15 was used in 
each case. 
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D: Deriving 𝑆𝑆𝑏𝑏0 Through Zero-stretch Flame Speed Extrapola�on 
 

A linear extrapolation to 𝐾𝐾 = 0 was performed on the adiabatic 𝑑𝑑𝑅𝑅𝑓𝑓 𝑑𝑑𝑡𝑡⁄ , Santner-corrected 𝑆𝑆𝑏𝑏, and 
SRADIF-correced 𝑆𝑆𝑏𝑏 curves for the DNS test case described in Supplementary Material C, shown 
in Fig. S5. Best least-squared fit parameters for the linear extrapolations are also provided, where 
the y-intercept of each best fit equation corresponds to 𝑆𝑆𝑏𝑏0. The 𝑆𝑆𝑏𝑏0 value obtained from 
extrapolating the adiabatic curve is 𝑆𝑆𝑏𝑏0 = 67.83 cm/s, which agrees well with the steady-state value 
of 𝑆𝑆𝑏𝑏0 = 67.66 cm/s for a planar R-32/air flame with equivalent unburned gas conditions, shown in 
Fig. S6. The steady state value for 𝑆𝑆𝑏𝑏0 for the radiative case was derived from an inverted, planar 
DNS case, which resulted with a steady state value of 𝑆𝑆𝑢𝑢0 = 7.02 cm/s, as shown in Fig. S7. The 
inverted, planar case differs from a normal case in that it is initiated by igniting a burned gas kernel 
from the right boundary instead of the left, allowing the planar flame to propagate to the left with 
a negative flame speed into a quiescent unburned gas. This allowed the steady-state flame 
propagation speed (e.g., 𝑆𝑆𝑢𝑢0) to be unaffected by burned gas contraction due to radiative cooling. 
The steady-state value of  𝑆𝑆𝑢𝑢0 can be multiplied by the density ratio (𝜌𝜌𝑢𝑢 𝜌𝜌𝑏𝑏⁄ ) to give a steady-state 
value of 𝑆𝑆𝑏𝑏0 = 61.66 cm/s, which agrees well with the extrapolated value of the SRADIF-corrected 
𝑆𝑆𝑏𝑏 curve, which is 𝑆𝑆𝑏𝑏0 = 62.838 cm/s as shown in Fig. S5. As previously mentioned, 𝜌𝜌𝑏𝑏 is not 
uniquely defined for flames affected by radiation heat loss and using 𝜌𝜌𝑏𝑏 = 𝜌𝜌𝑎𝑎𝑎𝑎 in the density ratio 
is an approximation.  

 

 

Fig. S5. 𝑑𝑑𝑅𝑅𝑓𝑓 𝑑𝑑𝑡𝑡⁄  and radiation-corrected 𝑆𝑆𝑏𝑏 vs. 𝐾𝐾 for a spherically expanding R-32/air flame with 
𝜑𝜑 =1.2, 𝑃𝑃 = 1 atm, and 𝑇𝑇𝑢𝑢 = 300 K. “Adiabatic” refers to the 𝑆𝑆𝑏𝑏 curve derived from DNS with 
radiation heat loss neglected. “Radiation” refers to the 𝑑𝑑𝑅𝑅𝑓𝑓 𝑑𝑑𝑡𝑡⁄  curve derived from DNS with 
radiation heat loss included. “DNS-Corrected” refers to the 𝑆𝑆𝑏𝑏 curve, in which 𝑢𝑢𝑏𝑏 was derived 
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from DNS results using Eq. (12). “Santner-Corrected” refers to the 𝑆𝑆𝑏𝑏 curve, in which 𝑢𝑢𝑏𝑏 was 
derived from the analytical model of Santner et al. [5]. “SRADIF-corrected” refers to the 𝑆𝑆𝑏𝑏 curve, 
in which 𝑢𝑢𝑏𝑏 was derived from the developed SEF radiation model.   

 

 

Fig. S6. 𝑑𝑑𝑅𝑅𝑓𝑓 𝑑𝑑𝑡𝑡⁄  vs. 𝑡𝑡 for a planar R-32/air flame with 𝜑𝜑 =1.2, 𝑃𝑃 = 1 atm, and 𝑇𝑇𝑢𝑢 = 300 K assuming 
adiabatic conditions.  

 

 
 
 
Fig. S7. 𝑑𝑑𝑅𝑅𝑓𝑓 𝑑𝑑𝑡𝑡⁄  vs. 𝑡𝑡 for an inverted, planar R-32/air flame with 𝜑𝜑 =1.2, 𝑃𝑃 = 1 atm, and 𝑇𝑇𝑢𝑢 = 300 
K assuming radiation heat loss. 
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E: Interpre�ng Experimental Data Using SRADIF and Comparison to DNS 
Results 

 
CON-P SEF experimental measurements for 𝑅𝑅𝑓𝑓 vs. 𝑡𝑡 were obtained from Hegetschweiler 

& coworkers [6,7], who used spherical flame edge and flame curvature methods to process flame 
images. Measurements for 𝑅𝑅𝑓𝑓 vs. 𝑡𝑡, derived through the spherical flame curvature method, for a 
R-32/air flame with initial 𝜑𝜑 = 1.2, 𝑃𝑃 = 1 atm, and 𝑇𝑇𝑢𝑢 = 300K were used as inputs to the SRADIF 
model to demonstrate the model’s ability to interpret experimental data. The experimental 𝑑𝑑𝑅𝑅𝑓𝑓 𝑑𝑑𝑡𝑡⁄ , 
SRADIF-derived 𝑢𝑢𝑏𝑏, and radiation-corrected 𝑆𝑆𝑏𝑏 for this case are compared against DNS results in 
Figure S8a-b. As the experimental 𝑑𝑑𝑅𝑅𝑓𝑓 𝑑𝑑𝑡𝑡⁄  approaches and coincides with the quasi-steady region 
of 𝑑𝑑𝑅𝑅𝑓𝑓 𝑑𝑑𝑡𝑡⁄  from DNS, the respective SRADIF-derived 𝑢𝑢𝑏𝑏 and radiation-corrected 𝑆𝑆𝑏𝑏 agree very 
well for a majority of the relevant range of flame radii. These results highlight SRADIF’s ability 
to interpret experimental measurements, effectively quantifying radiation-induced flow effects in 
spherical R-32/air flames.  
 

 
 
Fig. S8. Spherical, R-32/air flame with 𝜑𝜑 =1.2, 𝑃𝑃 = 1 atm, and 𝑇𝑇𝑢𝑢 = 300 K. a.) DNS-corrected 
burned flame speed vs. stretch, b.) Radiation-induced inward flow velocity vs. stretch. Solid 
region indicates flame radius range applicable to typical CON-P SEF experimental setups (1.0 
cm < 𝑅𝑅𝑓𝑓 < 3.0 cm). 
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F: Deriva�on for 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎(𝑟𝑟) Equa�on 
 

Table S4. Variable nomenclature for derivation of 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎(𝑟𝑟). 

𝑟𝑟 Radial distance 
𝑡𝑡 Time 
𝑇𝑇 Temperature 
𝜌𝜌 Density 
𝑃𝑃 Pressure 
𝑐𝑐𝑝𝑝 Specific heat at constant pressure 
𝑅𝑅 Specific gas constant 
𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎 Gas flow velocity induced by radiation heat loss 
�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 Volumetric radiation heat loss flux 
�̇�𝑞𝑐𝑐𝑖𝑖𝑖𝑖𝑎𝑎 Volumetric conduction heat flux 
�̇�𝑞𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓 Volumetric mass diffusion heat flux 
�̇�𝑞𝐻𝐻𝐻𝐻𝐻𝐻 Volumetric chemical heat release flux 

 

Without Convec�on Term in Energy Equa�on 
 

Assumptions: 

• 𝑃𝑃 ≈ constant for all 𝑟𝑟 and 𝑡𝑡 
• 𝑅𝑅 ≈ constant for all 𝑟𝑟 and 𝑡𝑡 (within the burned gas region) 
• Heat transfer due to conduction, convection, mass diffusion, and chemical heat 

production/consumption do not affect 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎 

 

Governing Reac�ng Flow Equa�ons in Spherical Coordinates: [8] 
 

Continuity Equation: 

 

�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

+
1
𝑟𝑟2
𝜕𝜕(𝜌𝜌𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)

𝜕𝜕𝑟𝑟
= 0 (9) 

 

Conservation of Energy Equation: 

 

𝜌𝜌𝑐𝑐𝑝𝑝 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

= −�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 (10) 
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Equation of State: 

 

𝑃𝑃 = 𝜌𝜌𝑅𝑅𝑇𝑇 (11) 

 

1. Take partial derivatives of the equation of state (Eq. (11)) with respect to 𝑡𝑡 to obtain 
relationship between derivatives of 𝑇𝑇 and 𝜌𝜌: 

 

�
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

= −
𝑇𝑇
𝜌𝜌
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

(12) 

 

2. Substitute �𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
�
𝑟𝑟𝑎𝑎𝑎𝑎

 in conservation of energy equation (Eq. (10)) with Eq. (12): 

 

−𝑐𝑐𝑝𝑝𝑇𝑇 �
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

= −�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 (13) 

 

3. Substitute �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟𝑎𝑎𝑎𝑎

 from continuity equation (Eq. (9)) into Eq. (13) and simplify: 

 

−𝑐𝑐𝑝𝑝𝑇𝑇 �−
1
𝑟𝑟2
𝜕𝜕(𝜌𝜌𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)

𝜕𝜕𝑟𝑟
� = −�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 

 

𝜕𝜕(𝜌𝜌𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)
𝜕𝜕𝑟𝑟

= −
𝑟𝑟2

𝑐𝑐𝑝𝑝𝑇𝑇
�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 (14) 

 

4. Integrate Eq. (14) with respect to 𝑟𝑟 and simplify to obtain final equation for 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎(𝑟𝑟): 

 

𝜕𝜕(𝜌𝜌𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2) = −
𝑟𝑟2

𝑐𝑐𝑝𝑝𝑇𝑇
�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎𝜕𝜕𝑟𝑟 
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𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎(𝑟𝑟) = −
1
𝜌𝜌𝑟𝑟2

�
�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎
𝑐𝑐𝑝𝑝𝑇𝑇

�̅�𝑟2𝜕𝜕�̅�𝑟
𝑟𝑟

0
(15) 

 

 

Including Convec�on Term in Energy Equa�on 
 

Assumptions: 

• 𝑃𝑃 ≈ constant for all 𝑟𝑟 and 𝑡𝑡 
• 𝑅𝑅 ≈ constant for all 𝑟𝑟 and 𝑡𝑡 (within the burned gas region) 
• Heat transfer due to conduction, mass diffusion, and chemical heat 

production/consumption do not affect 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎 
• Convective heat transfer affects 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎 by accounting for burned gas shrinkage and its 

effect on the unburned gas flow 

 

Governing Reac�ng Flow Equa�ons in Spherical Coordinates: [8] 
 

Continuity Equation: 

 

�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

+
1
𝑟𝑟2
𝜕𝜕(𝜌𝜌𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)

𝜕𝜕𝑟𝑟
= 0 (16) 

 

Conservation of Energy Equation: 

 

𝜌𝜌𝑐𝑐𝑝𝑝 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

+ 𝜌𝜌𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝑟𝑟

= −�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 (17) 

 

Equation of State: 

 

𝑃𝑃 = 𝜌𝜌𝑅𝑅𝑇𝑇 (18) 
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1. Take partial derivatives of the equation of state (Eq. (18)) with respect to 𝑡𝑡 and 𝑟𝑟 to obtain 
relationship between partial derivatives of 𝑇𝑇 and 𝜌𝜌: 

 

�
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

= −
𝑇𝑇
𝜌𝜌
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

(19) 

 

𝜕𝜕𝑇𝑇
𝜕𝜕𝑟𝑟

= −
𝑇𝑇
𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

(20) 

 

2. Substitute �𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
�
𝑟𝑟𝑎𝑎𝑎𝑎

 and 𝜕𝜕𝑇𝑇
𝜕𝜕𝑟𝑟

 in conservation of energy equation (Eq. (17)) with Eq. (19) and Eq. 

(20), respectively: 

 

−𝑐𝑐𝑝𝑝𝑇𝑇 �
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡
�
𝑟𝑟𝑎𝑎𝑎𝑎

− 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝𝑇𝑇
𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

= −�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 (21) 

 

3. Substitute �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟𝑎𝑎𝑎𝑎

 from continuity equation (Eq. (16)) into Eq. (21) and simplify: 

 

−𝑐𝑐𝑝𝑝𝑇𝑇 �−
1
𝑟𝑟2
𝜕𝜕(𝜌𝜌𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)

𝜕𝜕𝑟𝑟
� − 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝𝑇𝑇

𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

= −�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 

 

𝜕𝜕(𝜌𝜌𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)
𝜕𝜕𝑟𝑟

− 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2
𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

= −
𝑟𝑟2

𝑐𝑐𝑝𝑝𝑇𝑇
�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 (22) 

 

4. Perform product rule expansion for first LHS term of Eq. (22): 

 

𝜕𝜕(𝜌𝜌𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)
𝜕𝜕𝑟𝑟

= 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2
𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

+ 𝜌𝜌
𝜕𝜕(𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)

𝜕𝜕𝑟𝑟
(23) 

 

5. Substitute Eq. (23) into Eq. (22) and cancel like terms: 
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𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2
𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

+ 𝜌𝜌
𝜕𝜕(𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)

𝜕𝜕𝑟𝑟
− 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2

𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

= −
𝑟𝑟2

𝑐𝑐𝑝𝑝𝑇𝑇
�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 

 

𝜌𝜌
𝜕𝜕(𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2)

𝜕𝜕𝑟𝑟
= −

𝑟𝑟2

𝑐𝑐𝑝𝑝𝑇𝑇
�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 (24) 

 

6. Integrate Eq. (24) with respect to 𝑟𝑟 and simplify to obtain final equation for 𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎(𝑟𝑟): 

 

𝜕𝜕(𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟2) = −
𝑟𝑟2

𝜌𝜌𝑐𝑐𝑝𝑝𝑇𝑇
�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎𝜕𝜕𝑟𝑟 

 

𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎(𝑟𝑟) = −
1
𝑟𝑟2
�

�̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎
𝜌𝜌𝑐𝑐𝑝𝑝𝑇𝑇

�̅�𝑟2𝜕𝜕�̅�𝑟
𝑟𝑟

0
(25) 

 
 
 
Including All Terms in Energy Equa�on 
 

• 𝑃𝑃 ≈ constant for all 𝑟𝑟 and 𝑡𝑡 
• 𝑅𝑅 ≈ constant for all 𝑟𝑟 and 𝑡𝑡 (within the burned gas region) 

 
Governing Reac�ng Flow Equa�ons in Spherical Coordinates: [8] 
 
Continuity Equation: 

 

𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡

+
1
𝑟𝑟2
𝜕𝜕(𝜌𝜌𝑢𝑢𝑟𝑟2)

𝜕𝜕𝑟𝑟
= 0 (26) 

 

Conservation of Energy Equation: 

 

𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

+ 𝜌𝜌𝑢𝑢𝑐𝑐𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝑟𝑟

= �̇�𝑞𝑐𝑐𝑖𝑖𝑖𝑖𝑎𝑎 + �̇�𝑞𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓 + �̇�𝑞𝐻𝐻𝐻𝐻𝐻𝐻 − �̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 (27) 
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𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

+ 𝜌𝜌𝑢𝑢𝑐𝑐𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝑟𝑟

=
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝜆𝜆𝑟𝑟2 𝜕𝜕𝑇𝑇

𝜕𝜕𝑟𝑟
� + 𝜌𝜌

𝜕𝜕𝑇𝑇
𝜕𝜕𝑟𝑟
�𝑐𝑐𝑝𝑝,𝑘𝑘𝐷𝐷𝑘𝑘

𝜕𝜕𝑌𝑌𝑘𝑘
𝜕𝜕𝑟𝑟

𝑘𝑘

+  ��̇�𝜔𝑘𝑘∆ℎ𝑓𝑓,𝑘𝑘
0

𝑘𝑘

− �̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎 (28) 

 

 

Equation of State: 

 

𝑃𝑃 = 𝜌𝜌𝑅𝑅𝑇𝑇 (29) 

 
 
1. Following a similar procedure used to derive Eqns. (19)-(25), an equation for estimating the 
total gas velocity 𝑢𝑢(𝑟𝑟) within the burned gas (0 < 𝑟𝑟 < min(𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎(𝑟𝑟)) considering contributions from 
all heat terms of the conservation of energy equation is derived: 
 

𝑢𝑢(𝑟𝑟) = −
1
𝑟𝑟2
�

�̅�𝑟2

𝜌𝜌𝑐𝑐𝑝𝑝𝑇𝑇
��̇�𝑞𝑐𝑐𝑖𝑖𝑖𝑖𝑎𝑎 + �̇�𝑞𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓 + �̇�𝑞𝐻𝐻𝐻𝐻𝐻𝐻 − �̇�𝑞𝑟𝑟𝑎𝑎𝑎𝑎�𝜕𝜕�̅�𝑟

𝑟𝑟

0
(30) 
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G: R-1234yf Chemical Mechanism DRG Reduc�on 
 
 
The direct relation graph (DRG) method [9] was used to reduce the R-1234yf chemical model 
obtained from NIST (hfc-yf-zee-zf-model-b.cti) [10]. This chemical model is published in NIST’s 
technical note, which includes the exact mechanism in text form. The DRG method was performed 
using pyMARS. Adiabatic flame solutions for equivalence ratios (𝜑𝜑) of 0.8-1.2 at 𝑃𝑃 =1 atm and 
𝑇𝑇𝑢𝑢 = 400 K were utilized. Under these conditions, the chemical model was reduced from 113 
species and 1064 reactions to 50 species and 269 reactions. The reduced chemical model (named 
reduced_50_hfc_r1234yf_sep32021.cti) was used in all planar freely propagating flame 
simulations (Cantera) and spherically expanding flame simulations (SLTORC) to reduce 
computational costs. The reduced_50_hfc_r1234yf_sep32021.cti chemical model file, as well as 
the chemical kinetic, thermodynamic, and transport files, have been included as supplementary 
material.  
 
To further validate the applicability of the reduced chemical model to conditions near those used 
in the DRG chemical model reduction, planar freely propagating R-1234yf/air flame simulations 
were performed in Cantera for a range of equivalence ratios at 𝑃𝑃 = 1 atm and 𝑇𝑇𝑢𝑢 = 300 K using 
both the full and reduced chemical models for R-1234yf. These results are shown in Fig. S9. 
Although the unburned temperature of 300 K, as well as equivalence ratios of 0.7 and 1.3, were 
not included as conditions in the DRG chemical model reduction, the reduced chemical model still 
produces accurate results for the laminar flame speed, with a maximum deviation of 3.19% 
between the full and reduced chemical models. 
 
In addition, the reduced chemical model appears to have slightly increased the reactivity (higher 
laminar flame speeds) for these R-1234/air flames. This supports the prediction that the chemical 
model reduction did not reduce the flammability of radiative R-1234yf/air flames at 𝑇𝑇𝑢𝑢 = 300 K, 
which were interpreted to be “non-flammable” as a result of numerical convergence errors.  
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Fig. S9. Planar, R-1234yf/air flame with 𝑃𝑃 = 1 atm, and 𝑇𝑇𝑢𝑢 = 300 K varying equivalence ratio 
(𝜑𝜑) assuming adiabatic conditions. 
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