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Figure 1 Schematic for intercalation in the GeS, where guest species Cu, Sn and Au can be inserted into the van der 

Waals gap.  
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ABSTRACT   

Germanium sulfide (GeS) is a 2D semiconductor with high carrier mobility and a moderate band gap (~1.5 eV for 

multilayer crystals), which holds promise for high-speed optoelectronics and energy conversion. Here, we use time-

resolved THz spectroscopy to investigate how intercalation of Au, Cu, and Sn impacts the photoexcited carrier 

dynamics and transient photoconductivity of GeS nanoribbons. We find that zero-valent metals affect the 

photoexcited carrier lifetime and mobility in different ways. Intercalation of GeS with Cu reduces the lifetime of 

carriers from ~ 120 ps to 60 ps, while Au and Sn intercalation do not. At the same time, intercalation with Cu, Sn 

and Au significantly enhances the scattering time of photoexcited carriers (~120 fs vs ~65 fs without intercalation), 

highlighting the potential of zero-valent metal intercalation as a tool for engineering the optoelectronic properties of 

GeS nanostructures for application in high-speed electronic devices. 
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1. INTRODUCTION  

 

In the past few decades, two-dimensional (2D) nanomaterials have attracted much attention due to their unique 

electronic and optical properties.[1, 2] They exhibit a wide range of electronic band structures, from insulators and 

topological insulators to semiconductors, metals, and superconductors.[3-6] Recently, various methods to modify 2D 

materials to achieve tunable properties and device performance have experienced rapid development. Among them is 

the ability to insert molecules, ions, and atoms between the layers of material with weak van der Waals interactions. 

[3] (Fig. 1). Intercalation has arisen as a powerful tool to significantly increase the doping level and change the phase 

of the 2D material, either permanently or reversibly. Engineering electronic, optical, thermal, magnetic, and catalytic  
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properties of 2D via intercalation is advantageous for optoelectronics, superconductors, thermoelectronics, catalysis 

and energy storage applications.[7-16]  

 

GeS is a 2D van der Waals semiconductor with high carrier mobility and a moderate band gap (~1.5 eV in the bulk), 

which holds promise for high-speed optoelectronics and energy conversion.[17-19] Theory predicts that GeS 

monolayers are multiferroic, combining a robust ferroelasticity and ferroelectric polarization at room 

temperature.[20, 21] In-plane electric polarization results from an elastic distortion of the lattice, as the top and the 

bottom atoms shift in the armchair direction.[21, 22] It is predicted to result in a pronounced shift current effect, 

which is a major mechanism behind the bulk photovoltaic effect (BPVE) and makes GeS a promising candidate for 

BPVE-based solar cells.[17, 20, 21, 23, 24] In our earlier work, we have experimentally verified the prediction of a 

shift current in GeS by observing THz emission due to the surface shift current in GeS nanoribbons.[18] Here, we 

explore the possibility of tuning the electronic properties and photoexcited carrier dynamics in this material by 

intercalation of zero-valent metals, such as Cu, Sn and Au.[25-27] We use time-resolved THz spectroscopy (TRTS), 

a noncontact probe of microscopic photoconductivity, to investigate how intercalation of zero-valent metals impacts 

the lifetime and mobility of the photoexcited charge carriers.[28-33] 

 

2. EXPERIMENTAL SECTION  

 
Sample preparation. GeS nanoribbons on a sapphire substrate were prepared using established vapor−liquid−solid 

(VLS) growth. GeS nanoribbons vary from 10 to 100 μm in length and 1−100 μm in width, as well as 30−50 nm in 

thickness.[34] Zero-valent intercalation occurs through the generation of dilute amounts of metal atoms in solution, 

such as through a disproportionation redox reaction following established chemistries.[27, 35, 36] The initial pH of 

all glassware was controlled before use by cleaning in an acid bath, followed by neutralization overnight in 

deionized water.[27] The pretreatment of the glassware has a significant effect on both intercalation and 

deintercalation, especially of copper. Zero-valent metals were then intercalated through a disproportionation redox 

reaction.[27, 35] In the case of Cu, intercalation was performed by dissolving an air-stable Cu1+ salt of 0.01 g of 

tetrakis (acetonitrile) copper(I) hexafluorophosphate in 5 mL of HPLC grade acetone. The substrate with 2D 

materials was placed in a flask with the prepared acetone solution just below reflux at 45 °C for 3 hours. 

Intercalation of Sn was performed by dissolving 0.01 g of SnCl2 together with 0.1 g of tartaric acid in 5 mL of HPLC 

acetone. The substrate with the sample was placed in a flask with precursor solution and kept at 45 °C for 2 hours.  

 

Time-resolved THz spectroscopy. GeS nanoribbons were optically excited with 800 nm, 100 fs pulses. THz probe 

pulses with a 0.3 – 2 THz bandwidth, corresponding to 1-8 meV energy range, were generated and detected in 1 mm 

- thick ZnTe crystals. The changes in amplitude and phase of the transmitted THz pulses through a photoexcited 

sample ( ) were compared to those transmitted through an unexcited sample and were used to extract the 

complex photoconductivity as: [28] 

 

,                           (1) 

 

where  is the impedance of the free space,  is the refractive index of the substrate in the THz range, and 

 is the thickness of the optically excited region ( ).  

 

3. RESULTS AND DISCUSSION  

 
Photoconductivity dynamics after excitation with 800 nm, 100 fs pulses were studied in pure GeS nanoribbons and 

in GeS nanoribbons intercalated with Cu, Sn and Au. The atomic percent of intercalated metals in GeS, as previously 

mentioned, is limited to ~3% due to its corrugated structure hindering intercalation. [25] Photoconductivity can be 

represented by a transient change in the THz probe pulse peak. Normalized transient photoconductivity for GeS 

nanoribbons and GeS nanoribbons intercalated with ~ 3% atomic percent of Au, Cu and Sn following excitation with 

445 µJcm-2 is shown in Fig. 2. It exhibits a fast onset followed by a decay over hundreds of picoseconds. We note  
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here that 800 nm (1.55 eV) excitation of GeS, unlike 400 nm (3.1 eV) excitation, does not result in THz emission, 

indicating that 800 nm pulses predominantly excite carriers deep within the multilayer nanoribbons rather that in the 

surface layer which is responsible for THz emission by ultrafast shift current. 

 
Figure 2. Photoconductivity dynamics: normalized change in THz peak transmission in GeS nanoribbons, and GeS 

nanoribbons intercalated with Cu, Sn and Au, following photoexcitation with 800 nm, ~ 100 fs pulses.  

 
We find that photoconductivity dynamics are not significantly affected by either Au or Sn intercalation, as GeS, 

GeS:Au and GeS:Sn nanoribbons exhibit photoconductivity that initially decays over ~ 60 ps time scales with a 

much longer lived component. Photoconductivity decays as free photoexcited carriers become trapped at the defect 

state, both in the bulk and at the nanoribbon edges, and eventually recombine. On the other hand, intercalation with 

Cu significantly decreases carrier life time, as it introduces a much faster, ~ 10 ps decay component. We hypothesize 

that Cu intercalation introduces interband states that act as efficient traps for photoexcited carriers, while the Au- and 

Sn-intercalation does not.  
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Figure 3. Real (Δσ1) and imaginary (Δσ2) components of THz photoconductivity of GeS nanoribbons, Cu -, Sn – and 

Au-intercalated GeS nanoribbons respectively, measured at 5 ps after the excitation. The lines represent global fit for 

real and imaginary components of the conductivity to the Drude model. 

 

In addition to providing information about free carrier lifetimes after photoexcitation, TRTS allows us to measure 

frequency resolved complex THz photoconductivity. Photoexcitation-induced changes in the amplitude and phase of 

the THz pulse waveform transmitted through the sample were used to extract complex photoinduced changes in 

conductivity 5 ps after excitation with 445 µJ/cm2, 800 nm pulses. [18, 28, 29, 37, 38] Real (Δσ1) and imaginary 

(Δσ2) photoconductivity components are plotted in Fig. 5 as a function of THz frequency (ω). In general, the 

complex conductivity ( ) of both samples is well described by the Drude model, Equation (2), where N is the charge 

carrier density, m* is the effective carrier mass, and  is the effective scattering time:[30-32, 38-44] 

 

     (2) 

 

The  was first determined by fitting the measured frequency-resolved complex conductivity to the model. We find 

that the effective scattering times for all intercalated samples almost doubled in comparison to the pure GeS, as 

 in pure nanoribbons and  in GeS nanoribbons intercalated with either one of the zero valent 

metals Au, Sn, Cu The effective carrier scattering time, which determines carrier mobility, includes contributions 

from all possible carrier scattering processes, such as scattering by defects, interfaces, phonons, and carrier-carrier 

scattering at high carrier densities. Among these, the mechanism most susceptible to intercalation-induced changes is 

carrier-phonon scattering, as subtle changes to the host lattice can result in either softening or stiffening phonon 

modes.[45, 46] Previously reported XRD measurements reveal that zero valent metal intercalation increases the unit  
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cell volume, primarily due to a slight increase in the lattice constants in the armchair and, to a lesser effect, the 

zigzag direction.[25] Deformation of the lattice within the 2D layers due to intercalation may have an impact on the 

phonon modes. 

4. CONCLUSION 
 

We have investigated the influence of zero-valent metal intercalation on the photoconductivity of GeS nanoribbons 

using time-resolved THz spectroscopy. We find that intercalation can influence two parameters, free carrier lifetime 

and carrier scattering time. While the scattering time (and, therefore, carrier mobility) is increased by the presence of 

either Cu, Au or Sn, intercalation of 3% Cu also has a pronounced effect of decreasing the lifetime of photoexcited 

carriers. In summary, metal intercalation is a promising approach to engineering the microscopic conductivity and 

photoexcited carrier lifetime in GeS for applications in high-speed electronic devices.  
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