Course Descriptions
- ECE 5500 Power Systems Analysis
- This graduate level course examines the principles of Power System Analysis. It will begin with a review of AC circuit analysis. The course will then cover the topics of transmission line parameter calculation, symmetrical component analysis, transformer and load modeling, symmetrical and unsymmetrical fault analysis, power flow, and power systems stability. (Prerequisites: Knowledge of circuit analysis, basic calculus and differential equations, elementary matrix analysis and basic computer programming.)
- ECE 5520 Power Systems Protection and Control
- This graduate level course seeks to provide an understanding of how interconnected power systems and their components are protected from abnormal events such as faults (short circuits), over-voltages, off-nominal frequency and unbalanced phase conditions. This subject is presented from a theoretical viewpoint, however, many practical examples and applications are included that emphasize the limitations of existing protective equipment. Course content is not specific to any particular manufacturer’s equipment. The course begins with a brief review of power system operation, three-phase system calculations and the representation (modeling) of power system elements. The modeling of current transformers under steady-state and transient conditions is presented with emphasis on the impact on protective devices. A unit on system grounding and its impact on protective device operation are included. Course emphasis then shifts to protective devices and their principles of operation. Both electromechanical and numeric relay designs are covered. The final course segments cover specific applications such as pilot protection of transmission lines, generator protection and transformer protection. (Prerequisite: ECE 5500 Power System Analysis)
- ECE 5523 Power System Dynamics
- This graduate level course is concerned with modeling, analyzing and mitigating power system stability and control problems. The course seeks to provide an understanding of the electromechanical dynamics of the interconnected electric power grid. This subject is presented from a theoretical viewpoint; however, many practical examples are included. The course begins with a description of the physics of the power system, frequency regulation during “steady-state” operation, dynamic characteristics of modern power systems, a review of feedback control systems, power system frequency regulation, and a review of protective relaying. This is followed by material on synchronous machine theory and modeling. Simulation of power system dynamic response, small signal stability, transient stability analysis using SIMULINK and effects of non-traditional power sources on systems dynamics will also be covered. Power system stabilizers, load modeling and under frequency load shedding are covered in the final lectures. (Prerequisite: Familiarity with the basics of Laplace Transforms, derivatives, transfer functions, poles and zeros, block diagram and the notion of feedback with basic understanding power system analysis topics recommended. (ECE 5500 Power System Analysis and ECE 5511 Transients in Power Systems or equivalent background experience is suggested.)
- ECE 5531 Power System Operations and Planning
- This graduate-level course deals with modern operation, control and planning for power systems. Topics include: Characteristics of generating units; Economic Dispatch; Unit Commitment; Effects of the transmission system on power delivery; Optimal Power Flow and Location Marginal Pricing; Power System Security; State Estimation for Power Systems; Power System Reliability Evaluation. Software tools such as MATLAB and power system simulator software will be used both in the classroom and in some homework assignments.
- ECE 5540 Power Transmission
- This graduate level course focuses on the theory and current professional practice in problems of electric power transmission. It begins with a review of the theory of AC electric power transmission networks and addresses a range of challenges related to reactive power and voltage control as well as steady-state and transient stability. Students will learn in detail the principles of traditional reactive power compensation (shunt reactors and capacitors); series compensation and modern static reactive compensation like SVC, STATCOM and other Flexible AC Transmission Systems (FACTS) devices. The effects of each of these types of compensation on static and dynamic voltage control, reactive power requirement and steady-state and transient stability problems are covered from theoretical as well as practical aspects. Particular attention is given to the mathematical models and principles of operation of many types of compensation systems. Basic principles of operation and control of High-Voltage DC (HVDC) systems and their impact on steady-state and dynamics of power system will be covered as well. (Prerequisite: ECE 5500 Power System Analysis.
- MIS 576 Project Management
- This course presents the specific concepts, techniques and tools for managing projects effectively. The role of the project manager as team leader is examined, together with important techniques for controlling cost, schedules and performance parameters. Lectures, case studies and projects are combined to develop skills needed by project managers in today’s environment.
- OIE 542 Risk Management and Decision Making
- Risk management deals with decision making under uncertainty. This course is interdisciplinary in nature, drawing upon management science and managerial decision making, along with material from negotiation and cognitive psychology. Classic methods from decision analysis are first covered and then applied, from the perspective of business process improvement, to a broad set of applications in risk analysis and management. A variety of exercises are used to help students develop skills in integrating subjective and objective information in modeling and evaluating risk. (An introductory understanding of statistics is assumed.) Students who have taken OIE 541 may not receive credit for this course.
- OIE 598 Engineering Economics
- This course aids all engineering students in understanding economics and business constraints on engineering decision making. Topics include evaluation of alternative; the six time-value-of-money factors; present worth, annual cash flow and rate-of-return analysis; incremental analysis; depreciation and income taxes; replacement analysis; inflation; handling probabilistic events; public economy; break-even and minimum cost points; and foreign exchange.
- OBC 505 Teaming and Organizing for Innovation
- How do we navigate complex human systems in organizations? How do we foster innovation within organizations? In this course, we explore the paradoxes, opportunities, and hidden systemic challenges that arise on teams and projects, and in working across networks and within innovative organizations. Students will learn to more deftly manage the inherent challenges and opportunities of cross-cultural and multi-disciplinary teams; work through or avoid dysfunctional team and organizational conflicts; wrestle with ambiguity and uncertainty; negotiate change by learning to work with networks of power and influence; and analyze the individual, group, organizational and contextual dynamics that enable and constrain productive and innovative work in organizations.
- MA 501 Engineering Mathematics
- This course develops mathematical techniques used in the engineering disciplines. Preliminary concepts will be reviewed as necessary, including vector spaces, matrices and eigen values. The principal topics covered will include vector calculus, Fourier transforms, fast Fourier transforms and Laplace transformations. Applications of these techniques for the solution of boundary value and initial value problems will be given. The problems treated and solved in this course are typical of those seen in applications and include problems of heat conduction, mechanical vibrations and wave propagation. (Prerequisite: A knowledge of ordinary differential equations, linear algebra and multivariable calculus is assumed.)