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a b s t r a c t

This paper presents an improved model for naturally curved and twisted anisotropic beams with closed
thin-walled cross-sections. By introducing eigenwarping functions and expanding axial displacements in
series of eigenwarpings, the differential equation involving the generalized warping coordinate and the
expression for eigenvalues can be derived using the principle of minimum potential energy. In the model
the effects of some factors such as the initial curvature, torsion of the beams as well as torsion-related
warping, transverse shear deformations and elastic coupling are incorporated. As an application, the pres-
ent model is adopted to do an analysis for closed thin-walled composite box beams. Comparison with the
existing experimental observation and numerical results shows that the proposed model is valid for ana-
lyzing such naturally curved and twisted beams.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Static and dynamic analysis of naturally curved and twisted
beams with closed thin-walled sections made of anisotropic mate-
rials has many important applications in mechanical, civil and
aeronautical engineering due to their outstanding engineering
properties, such as streamlined modeling and favorable loaded
characteristics. Helicopter blades and flexible space structures
are specific cases of the beams. Some beam theories have been
developed for analysis of mechanical behaviors, such as general-
ized beam theory [1] and refined beam theory [2–5]. The structural
behavior of the beams is no longer appropriately modeled with the
beam theory for isotropic materials [6–8], and a more advanced
theory must be developed. While much has been done in the the-
ories of plates, shells, straight beams and curved beams made of
laminated composite materials [9–25], much less has been done
in the theory of naturally curved and twisted closed thin-walled
beams made of anisotropic materials. There have been some re-
lated studies to the application of the finite element method for
the beam problem [26–28]. A comprehensive treatment to the
warping has been proposed for modeling box beams by using the
variational principles, which leads to solution for warping of
cross-sections in a corresponding eigenvaule problem [29]. This
theory is only valid for the straight beams. For the curved beams,
an improved model is needed for incorporating the effects of the
initial curvature and torsion of the beams. Recently, using solutions
for several characteristic beam elasticity problems from the exact
ll rights reserved.
beam theory, characteristic operators in formulation of the model
have been treated, which can be used to evaluate effectively the
structural behaviors including the warping effect [30].

This paper aims to propose an improved model for naturally
curved and twisted composite beams with closed thin-walled sec-
tions. By introducing eigenwarping functions and expanding axial
displacements in series of eigenwarpings, the differential equation
involving the generalized warping coordinate and the expression
for eigenvalues can be derived using the principle of minimum po-
tential energy. In the model the effects of some factors such as the
initial curvature, torsion of the beams as well as torsion-related
warping, transverse shear deformations and elastic coupling are
incorporated. Numerical examples are given, and comparison with
the existing experimental observation and numerical results shows
that the proposed model has enough exactness in computation,
and is valid for analysis of naturally curved and twisted anisotropic
beams with closed thin-walled cross-sections.

2. Geometry and constitutive relations of the beam

Let the locus of the cross-sectional centroid of the beam be a
continuous curve in space denoted by l, and the tangential, normal
and bi-normal unit vectors of the curve are denoted by t, n and b,
respectively. The Frenet–Serret formula for a smooth curve is

t0 ¼ k1n; n0 ¼ �k1t þ k2b; b0 ¼ �k2n; ð1Þ

where superscript prime represents the derivative with respect to s.
The symbols s, k1 and k2 are arc coordinate, curvature and torsion of
the curve, respectively.

http://dx.doi.org/10.1016/j.compstruct.2011.03.020
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Fig. 2. Closed cell thin-walled beam model.
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Let us introduce n- and g-directions in coincidence with the
principal axes through the centroid O1, as shown in Fig. 1. The
angle between the n-axis and normal n is represented by h, which
is generally a function of s. If the unit vectors of O1n and O1g are
represented by in and ig, then

in ¼ n cos hþ b sin h;

ig ¼ �n sin hþ b cos h:
ð2Þ

From Eq. (1) the following expressions are obtained

t0 ¼ kgin � knig;
i0n ¼ �kgt þ ksig;

i0g ¼ knt � ksin;
ð3Þ

in which kn = k1sinh, kg = k1cosh, ks = k2 + h.
A geometry of cross-section of the beam is shown in Fig. 2. The f

is the curvilinear coordinate describing the contour of the section,
denoted by C. It is assumed that the contour remains unchanged,
i.e., the cross-section does not deform in its own plane, but the
plane allows a warping deformation along its axis. The deforma-
tion of the beam is thus governed by six rigid body modes, namely,
three translations of the section, us(s), un(s), ug(s), and three rota-
tions of the section, us(s), un(s) and ug (s). The membrane stresses
in the beam are composed of an axial stress flow n and a shear
stress flow q. These two stress flows are acting in the plane of con-
tour and are uniform across the thickness of the beam. The consti-
tutive relations for a thin-walled laminated beam are expressed by
[29].

n

q

� �
¼

Ann Anq

Anq Aqq

� �
e

c

� �
; ð4Þ

in which the e and c are the membrane axial strain and (engineer-
ing) shear strain, respectively, and Ann ¼ A11 � A2

12=A22; Aqq ¼
A66 � A2

26=A22; Anq ¼ A16 � A12A26=A22, and Aij ¼
Pn

k¼1

R zk
zk�1

Qijdz
ði ¼ 1;2;6Þ where Qij are expressed by [31]
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where l, m are direct cosine and

Q 11 ¼ ð1� tLTtTLÞ�1EL;Q 22 ¼ ð1� tLTtTLÞ�1ET ;Q66 ¼ GLT ;

Q 12 ¼ Q 21 ¼ ð1� tLTtTLÞ�1tLT EL:
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Fig. 1. Geometry of the cross-section.
3. Equilibrium equations

Simplifying stress vectors to the centroid O1 on the cross-
section A, as shown in Fig. 3, the principal vector Q(Qs,Qn,Qg) and
principal moment M(Ms,Mn,Mg) are written by

Q ¼ Qst þ Q nin þ Qgig; M ¼ Mst þMnin þMgig;

where Qs is axial force, Qn and Qg are two shear forces while Ms is
torque, Mn and Mg are bending moments. The external forces and
moments per unit length along the beam axis are indicated by p
and m as

p ¼ pst þ pnin þ pgig;m ¼ mst þmnin þmgig:

The equilibrium equations are

d
ds
fQg � ½K� � fQg þ fpg ¼ f0g;

d
ds
fMg � ½K� � fMg � ½H� � fQg þ fmg ¼ f0g;

ð5Þ

where

fQg ¼ Q s Q n Qg
� �T

; fMg ¼ Ms Mn Mg
� �T

;

fpg ¼ ps pn pg
� �T

; fmg ¼ ms mn mg
� �T

;

½K� ¼
0 kg �kn

�kg 0 ks

kn �ks 0

2
64

3
75; ½H� ¼

0 0 0
0 0 1
0 �1 0

2
64

3
75:
Fig. 3. Stress resultants in a typical beam element.
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The general solutions have the following forms [32]:

fQg ¼ ½A� � fQ 0g �
Z s

0
½A�T � fpgds

� �
;

fMg ¼ ½A� � fM0g þ
Z s

0
½A�T � ð½H� � ½A� � ðfQ 0g þ fQ �gÞ � fmgÞds

� 	
;

ð6Þ

where {Q0} and {M0} are column matrices for integration constants,
and fQ �g ¼ �

R s
0 ½A�

T � fpgds in which [A] is the matrix of direction co-
sine with each element being dot product of two corresponding unit
vectors for both coordinate system characterized by t, in, ig and ix, iy,
iz respectively expressed by

½A� ¼
t � ix t � iy t � iz

in � ix in � iy in � iz

ig � ix ig � iy ig � iz

2
64

3
75: ð7Þ
4. Mathematical formulation for the eigenwarping approach

In eigenwarping approach, the solution for the problem will be
determined by adding eigenwarping in the form of a series expan-
sion to a warping-free solution. The warping of cross-sections is
determined by a solution for a corresponding eigenvaule problem.
The eigenvaule problem can be tackled using a discretized element
method based on the discretization for eigenwarping function over
the section of the beams [29].

Assuming that the deformation of the beam consists of stretch-
ing, bending and torsion, thus the displacement field neglecting the
effect of warping can be written as follows

u ¼Wt þ Uin þ Vig; ð8Þ

in which

W ¼ usðsÞ þ gunðsÞ � nugðsÞ;
U ¼ unðsÞ � gusðsÞ;
V ¼ ugðsÞ þ nusðsÞ:

ð9Þ

The strain–displacement relations are [6]

ffiffiffi
g
p

e11or ¼ es þ gxn � nxg;

2
ffiffiffi
g
p

e12or ¼ en � gxs;

2
ffiffiffi
g
p

e13or ¼ eg þ nxs;

ð10Þ

In these equations,

es ¼ u0s � kgun þ knug; en ¼ u0n þ kgus � ksug �ug;

eg ¼ u0g � knus þ ksun þun; xs ¼ u0s � kgun þ knug;

xn ¼ u0n þ kgus � ksug; xg ¼ u0g � knus þ ksun:

ð11Þ

The above equation is usually referred to as geometry equations,
and can be rewritten as

d
ds
fug � ½K�fug � fxg ¼ f0g;

d
ds
fug � ½K� � fug � ½H� � fug � feg ¼ f0g;

ð12Þ

where

fug ¼ ½us un ug�
T
; fug ¼ ½us un ug�T ;

fxg ¼ ½xs xn xg�T ; feg ¼ ½es en eg�T ;
so the general solutions to the geometry equations are [32]

fug ¼ ½A� � ðfu0g þ fu�gÞ;

fug ¼ ½A� � fU0g þ
Z s

0
½A�T � ðfeg þ ½H� � ½A�ðfu0g þ fu�gÞÞds

� 	
;

ð13Þ

in which {u0} and {U0} are integration constants, fu�g ¼R s
0 ½A�

T � fxgds: For simplicity, the initial curvature k1 is assumed to
be small, because kn = k1sinh, kg = k1cosh, then g = (1 � nkg + gkn)2

givesffiffiffi
g
p
� 1:

The above equation is realistic for most practical applications. The
strains e, c in Eq. (4) can be written using Eq. (10) as

e ¼ e11or ¼ es þ gxn � nxg;

c ¼ 2e12or
dn
df
þ 2e13or

dg
df
¼ en

dn
df
þ eg

dg
df
þ rxs:

ð14Þ

According to the relation between the internal forces and stress
flows defined by

Q s ¼
Z

C
nordf; Ms ¼

Z
C

qorrdf;

Q n ¼
Z

C
qor

dn
df

df; Mn ¼
Z

C
norgdf;

Qg ¼
Z

C
qor

dg
df

df; Mg ¼ �
Z

C
norndf;

ð15Þ

using Eqs. (4) and (14), Eq. (15) changes to

Qs ¼ Ses;

Q n ¼ GnAnnen þ GgAngeg þ
R

C Aqqr dn
df dfxs;

Qg ¼ GnAngen þ GgAggeg þ
R

C Aqqr dg
df dfxs;

Ms ¼ IPxs þ
R

C Aqqr dn
df dfen þ

R
C Aqqr dg

df dfeg;

Mn ¼ Innxn;

Mg ¼ Iggxg;

ð16Þ

where Gn and Gg are the shear coefficients in n- and g-directions for
closed thin-walled composite beams [33]; S ¼

R
C Anndf is the axial

stiffness, and Inn ¼
R

C Anng2df is the bending stiffness (similar defini-

tion for IggÞ;Ann ¼
R

C Aqq
dn
df

� �2
df is the shear stiffness (similar defini-

tions for Agg and Ang), and IP ¼
R

C Annr2df is the torsional stiffness. In
above derivation, the equations

R
C Annndf ¼

R
C Anngdf ¼

R
C Annn

gdf ¼ 0; have been applied. The six strain measures es, en, eg, xs,
xn, xg in Eq. (16) can be evaluated by the internal forces deter-
mined from Eq. (6). Using the resulting strain measures, the strains
e and c and stress flows n and q can be obtained from Eqs. (14) and
(4), respectively. The displacements in Eq. (8) can be also deter-
mined using Eq. (13).

In the following let us consider the effect of warping. For an un-
loaded beam, i.e., p = m=0, an additional part of solution for the dis-
placement in the axial direction and three strain measures is
assumed to be in the form of

Wcoðf; sÞ ¼ uðfÞaðsÞ;
encoðsÞ ¼ UaðsÞ;
egcoðsÞ ¼ VaðsÞ;
xscoðsÞ ¼ NaðsÞ;

ð17Þ

where u(f) and a(s) are the eigenwarping modes of the cross-
section and the generalized warping coordinates, respectively, and
U;V and N are three unknown parameters. Substituting Eq. (17) into
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the strain–displacement relations incorporating the warping effect
[6,34], yields

e11co ¼ uðfÞa0ðsÞ þ ks
@u
@n

� �
g� @u

@g

� �
n

h i
aðsÞ;

cco ¼ 2e12co
dn
df þ 2e13co

dg
df

¼ UaðsÞ dn
df � gNaðsÞ dn

df þ
@u
@n

� �
þ kgu

h i
aðsÞ dn

df

þVaðsÞ dg
df þ nNaðsÞ dg

df þ ð
@u
@gÞ � knu

h i
aðsÞ dg

df

¼ du
df � knu dg

df þ kgu dn
df þ U dn

df þ V dg
df þ rN

� �
aðsÞ;

ð18Þ

where r is the distance from the centroid O1 to the tangent to the
cross-sectional curve, as shown in Fig. 2. For orthotropic beam
whose two axes of orthotropy are parallel to the axis of the beam
and the tangent, A16 = A26 = 0, resulting in Anq = 0, which indicates
vanishing of the in-plane extension-shearing coupling of the lami-
nate. The corresponding strain energy is

Pco ¼
1
2

Z l

0

Z
C
ðAnne2

11co þ Aqqc2
coÞdfds;

The expression for eigenvalues can be derived by minimizing the
energy with respect to u;U;V and N. The associated eigenvalues
l2

i can be obtained in the form of a Rayleigh quotient below
l2
i ¼

R
C Aqq

dui
df � knui

dg
df þ kgui

dn
df þ Ui

dn
df þ Vi

dg
df þ Nir

� �2
þ Ann

Aqq
k2

s
@ui
@n

� �
g� @ui

@g

� �
n

h i2
� 	

dfR
C Annu2

i df
; ð19Þ
where Ui;Vi;Ni are determined byZ
C

Aqq

X
Wi

dui

df
� knWiui

dg
df
þkgWiui

dn
df
þUi

dn
df
þVi

dg
df
þNir

� �
dn
df

df¼ 0

Z
C

Aqq

X
Wi

dui

df
� knWiui

dg
df
þkgWiui

dn
df
þUi

dn
df
þVi

dg
df
þNir

� �
dg
df

df¼ 0

ð20Þ
Z

C
Aqq

X
Wi

dui

df
� knWiui

dg
df
þkgWiui

dn
df
þUi

dn
df
þVi

dg
df
þNir

� �
rdf¼ 0

where

ui ¼

s�si�1
h si�1 6 s 6 si

siþ1�s
h si 6 s 6 siþ1

0 other

8><
>: ð21Þ

in which si corresponds to the discretized point along the contour of
the section denoted by C (see also Fig. 2). In above derivation the
following set of orthonormality relationsZ

C
Annuiujdf ¼ dij;

Z
C

AqqCiCjdf ¼ l2dij; ð22Þ

where
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dui

df
� knui

dg
df
þ kgui

dn
df
þ Ui

dn
df
þ Vi

dg
df
þ Nir

� �2

þ Ann

Aqq
k2

s
@ui

@n

� ��s
have been used, and the products of the generalized warping coor-
dinate and their derivative are eliminated due to small displace-
ment theory. The resulting Eq. (19) contains the terms related to
the initial curvature and torsion of the beam, which can be applied
to analysis of such naturally curved and twisted beams.
5. Improved beam model and equivalent constitutive equations

Using Eqs. (9), (11) and (17) , the combined displacement in
the axial direction and three strain measures can be expressed
by
Wim ¼W þWco ¼W þ
X

i

uiðfÞaiðsÞ; ð23ÞX

enim ¼ en þ enco ¼ en þ

i

UiaiðsÞ;

egim ¼ eg þ egco ¼ eg þ
X

i

V iaiðsÞ;

xsim ¼ xs þxsco ¼ xs þ
X

i

NiaiðsÞ;

ð24Þ

Thus, the total strain components e and c are
e ¼ e11or þ
X

i

uiðfÞa0iðsÞ þ ks
@ui

@n

� �
g� @ui

@g

� �
n

� �
aiðsÞ

� 	
;

c ¼ 2e12or
dn
df
þ 2e13or

dg
df
þ
X

i

dui

df
� knui

dg
df
þ kgui

dn
df

�

þ Ui
dn
df
þ Vi

dg
df
þ rNi

�
aiðsÞ:

ð25Þ

The total potential energy for the beam

P ¼ 1
2

Z l

0

Z
C
ðAnne2 þ Aqqc2Þdfds�

Z l

0
ðpnun þ pgug þmsusÞds;

ð26Þ

Using the orthonormality relationships (17), Eq. (26) changes to

P ¼ Por þ
X

i

Z l

0

1
2

a02i þ l2
i a

2
i

 �
� diai

� �
ds; ð27Þ

where

di ¼ QnðUi þ kguiÞ þ QgðVi � knuiÞ þMsNi: ð28Þ

The Por is the energy for the warping-free beam. The second term in
Eq. (27) indicates that u;U;V and N are independent of the previous
six rigid body modes corresponding to the warping-free beam. Min-
imizing Por will result in the equilibrium Eq. (5), and minimizing
the second terms with respect to ai yields

a00i � l2
i ai ¼ �di: ð29Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� @ui

@g

� �
n

�2

;
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The above equation is solved easily. Accordingly, the improved
solution for the problem in terms of the series expansion of
eigenwarping takes the form of

Wim ¼W þ
P

i
uiai; enim ¼ en þ

P
i

Uiai;

egim ¼ eg þ
P

i
V iai; xsim ¼ xs þ

P
i

Niai;

nim ¼ nþ
P

i
Ann uiðfÞa0iðsÞ þ ks

@ui
@n

� �
g� @ui

@g

� �
n

h i
aiðsÞ

n o
;

qim ¼ qþ
P

i
Aqq

dui
df � knui

dg
df þ kgui

dn
df þ Ui

dn
df þ Vi

dg
df þ rNi

� �
aiðsÞ:

ð30Þ
6. Example analysis

For the purpose of computation, a curved, thin-walled compos-
ite box beam fixed at one end (s = 0) and free at the other end
(s = l), as shown in Fig. 4, is considered as computational model.
The axis of the beam is assumed to be a circular arc with radius
a. In this case there is

b ¼ l
a
; kg ¼ k1 ¼

1
a
;

x ¼ a sin b; y ¼ að1� cos bÞ;

and h = ks = kn = 0 and kg = 1/R. The external load is assumed to be
uniformly distributed load pg in the g-direction, i.e.,

fpg ¼ ½0 0 pg�
T
; fmg ¼ ½0 0 0�T :

Using Eqs. (6) and (13), the expressions related to the internal forces
and displacements are

Ms ¼ M0s cos bþM0n sin bþ Q 0gað1� cos bÞ þ pga2ðsin b� bÞ;
Mn ¼ �M0s sin bþM0n cos bþ Q 0ga sin b� pga2ð1� cos bÞ;
Qg ¼ Q 0g � pgs;

us ¼ u0s cos bþu0n sin bþ a cos b
Z b

0
ðxs cos b�xn sin bÞdbþ

þ a sin b
Z b

0
ðxs sin bþxn cos bÞdb;

un ¼ �u0s sin bþu0n cos b� a sin b
Z b

0
ðxs cos b�xn sin bÞdbþ

þ a cos b
Z b

0
ðxs sin bþxn cos bÞdb;

ug ¼ U0g þu0sy�u0nxþ a
Z b

0
egdbþ

þ a
Z b

0
a sin b

Z b

0
ðxs cos b�xn sin bÞdb� a cos b

Z b

0
ðxs sin bþxn cos bÞdb

� �
db;

ð31Þ
z

O

x
y

β

a

Fig. 4. Geometry of a plane curved beam.
where M0s, M0n, Q0g and u0s, u0n, U0g are the values of Ms,Mn, Qg and
us, un, ug at the end s = 0, respectively.

For the uniformly distributed load, pg, Eq. (29) is rewritten by

a00i � l2
i ai ¼ �pgaVi

p
2
� b

� �
� pga2Ni

p
2
� b� cosb

� �
: ð32Þ

The form of the solution of Eq. (32) is

ai ¼ C1elis þ C2e�li s þ 1
l2

i

pgaVi
p
2
� b

� �
þ 1

l2
i

pga2Ni
p
2
� b

� �

� 1
1

a2 þ l2
i

 �pga2Nicosb: ð33Þ

where C1,C2 are unknown constants. Using the boundary conditions

s ¼ 0ðb ¼ 0Þ;U0s ¼ U0n ¼ U0g ¼ 0;u0s ¼ u0n ¼ u0g ¼ 0;ai ¼ 0;

s ¼ lðb ¼ blÞ;Ms ¼ Mn ¼ Qg ¼ 0;a0i ¼ 0;

from Eqs. (31) and (33), yields

M0s ¼ pga2 p
2
� 1

� �
; M0n ¼ �pga2; Q 0g ¼

p
2

pga;

C1 ¼ �1
2

a3l3
i pþ lipa� 2e

1
2lipal2

i a2 � 2e
1
2lipa

ð1þ elipaÞl3
i l2

i a2 þ 1
 � Vi

"

�1
2

a4l3
i pþ a2lip� 2a4l3

i � 2e
1
2lipaa

ð1þ elipaÞl3
i l2

i a2 þ 1
 � Ni

#
pg;

C2 ¼ �1
2

e
1
2lipa e

1
2lipaa3l3

i pþ e
1
2lipaalipþ 2l2

i a2 þ 2
l3

i 1þ elipað Þ l2
i a2 þ 1

 � Vi

"

�1
2

e
1
2lipa e
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The above equations will be used in numerical computation.

6.1. Convergence analysis of present model

To evaluate the structural behaviors, a more exact calculation of
eigenvalues l2

i in Eq. (19) is of importance to determination on
warping coordinate ai by Eq. (29). Consider a Graphite/Epoxy box
beam for the lay-up (0�/90�)3 with length l = 30.0 in., and height
and width of cross-section of the beam are h = 0.537 in. and
c = 0.953 in., respectively. Some elastic properties are given as
EL = 20.59 msi, ET = 1.42 msi, GLT = 0.87 msi and tLT = 0.42 [35].
The four edges of the cross-section are discretized to 1484, 2968,
3200 and 3500 elements, respectively. Different discretization will
result in corresponding values of eigenvalues for l2

i . The first ten
eigenvalues of l2

i for different elements are listed in Table 1. The
result indicates that when the number of discretized element is
large enough, e.g., it is close to 3200, the eigenvalues have enough
exactness in computation.
Table 1
First 10 eigenvalues for different discretized elements.

Elements Eigenvalues l2
i

 �
1 2 3 4 5

1484 1.93E�11 2.57E�12 5.01E�12 1.3226 1.4041
2968 9.38E�12 3.11E�11 5.34E�11 1.3225 1.4040
3200 3.25E�10 1.49E�10 9.75E�11 1.3225 1.4041
3500 1.16E�10 5.78E�11 2.27E�10 1.3225 1.4041

6 7 8 9 10

1484 2.3764 3.1522 5.559 5.6164 8.3641
2968 2.3763 3.1521 5.5588 5.6162 8.3636
3200 2.3763 3.1521 5.5588 5.6162 8.3637
3500 2.3763 3.1521 5.5588 5.6162 8.3636



Table 5
A comparison for the axial stress.

g (in.) Axial stress (psi)

Analytical solution [25] Present theory

�0.2443 �50.61224 �46.98076923
�0.19494 �39.18367 �37.48846154
�0.13291 �24.89796 �25.55961538
�0.07089 �11.83673 �13.63269231

0.05443 11.83673 10.46730769
0.11646 22.85714 22.39615385
0.19367 35.10204 37.24423077
0.24177 42.44898 46.49423077
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6.2. Comparison of results for present model with available data

A comparison of the span-wise distributions of bending slope is
listed in Table 2 for uncoupled cross-ply beams subjected to unit
tip bending load when the ratio of the length of the beam to the
height of the cross section is prescribed to be 29 [35]. It is observed
that present result is more close to the analytical solution [35] and
experimental data [36,37]. A comparatively lager error is seen when
compared with the finite element results [38]. Similar result for
twist angle to unit tip torque for the same lay-up is shown from Ta-
ble 3. In Table 4 the span-wise distribution of bending slope is illus-
trated for symmetric lay-up beams (i.e., top and bottom (45�)6, sides
(45�/�45�)3) subjected to a tip bending load where the ratio of the
length of the beam to the height of the cross-section is prescribed
to be 56 [35]. The result indicates that the present model shows
good accuracy in computation compared with available results.

For a beam with curvature k = 0.5 and 0.5 in. � 0.5 in. square
cross-section under a unit pure bending moment, a comparison
for the axial stress along g axis at n = 0 is given in Table 5. It is clear
that the present result is consistent with the analytical solution [25].

6.3. Effect of geometrical parameters of curved beam on structural
behaviors

Consider a carbon/epoxy box beam with the height and width of
the cross section h = 0.05 m and c = 0.08 m, respectively. The radius
Table 2
Bending slope of cross-ply lay-up beam under unit tip bending load ((0�/90�)3,
l/h = 29).

x (in.) Bending slope (Rad)

Experiment
[36,37]

Present
theory

Analysis
[35]

Beam FEM
[38]

0.00000 0.00000000 0.00000000 0.00000000 0.00000000
5.00000 0.00045008 0.00041242 0.00037479 0.00037479

10.00000 0.00072964 0.00072964 0.00065975 0.00063286
15.00000 0.00099231 0.00099231 0.00089552 0.00084107
20.00000 0.00117972 0.00117972 0.00105067 0.00100227
25.00000 0.00127034 0.00129186 0.00115206 0.00110365

Table 3
Twist angle of cross-ply lay-up beam under unit tip torque ((0�/90�)3, l/h = 29).

x (in.) Twist angle (Rad)

Experiment
[36,37]

Present
Theory

Analysis
[35]

Beam FEM
[38]

0.00000 0.00000000 0.00000000 0.00000000 0.00000000
5.00000 0.00006050 0.00006584 0.00006940 0.00007295

10.00000 0.00012545 0.00013262 0.00014057 0.00014875
15.00000 0.00019395 0.00020430 0.00021174 0.00022420
20.00000 0.00026513 0.00027046 0.00028114 0.00030466
25.00000 0.00036477 0.00034409 0.00035231 0.00037722

Table 4
Bending slope of symmetric lay-up beam under unit tip bending load (top and bottom
(45�)6, sides (45�/�45�)3, l/h = 56).

x (in.) Bending slope (Rad)

Experiment
[36,37]

Present
theory

Analysis
[35]

Beam FEM
[38]

0.00000 0.00000000 0.00000000 0.00000000 0.00000000
5.00000 0.01367000 0.01426000 0.01292630 0.01497760

10.00000 0.02343000 0.02497000 0.02348000 0.02665000
15.00000 0.03094000 0.03400000 0.03168920 0.03531000
20.00000 0.03633000 0.04062000 0.03763000 0.04230000
25.00000 0.03977000 0.04536000 0.04144000 0.04629000
a = 400 mm. The elastic constants of ply material in computation
are EL = 109.65 GPa, ET = 7.87 GPa, GLT = 2.92 GPa and tLT = 0.29.

Two lay-up configurations are considered. The first lay-up is of
form of [02, ± 45�]s for the vertical (web) and the horizontal (flange)
panels where the 0� direction is parallel to the beam axis (referred
to as the ‘‘balanced beam’’). In this case, one axis of orthotropy of
the laminate is along the beam axis, so no extensional–shearing
coupling is present. In second lay-up formation (the ‘‘unbalanced
beam’’), the same laminate is applied but its axis of orthotropy is
rotated 45� with respect to the beam axis, resulting in the
[450

2;900;00]s lay-up. The thickness of each laminate is chosen as
0.00025 m. Using Eq. (4), the results for the stiffness coefficients
of these laminates are derived as

Ann ¼ 122:12� 106 N=m; Aqq ¼ 31:33� 106 N=m and Anq ¼ 0:0

for the balanced beam, and

Ann ¼ 82:98� 106 N=m; Aqq ¼ 24:26� 106 N=m and

A�nq ¼ 17:29� 106 N=m

for the unbalanced configuration. The ± sign in Anq corresponds to
the panels on the left-hand and right-hand sides, respectively, and
also to the lower and upper skins, respectively.

For different central angles, b ¼ p
6 —p, two displacement compo-

nents, U, V, in n- and g-directions at point A (see Fig. 5) at the free
end of the balanced and unbalanced beams under uniformly dis-
tributed load pg are shown in Tables 6 and 7, respectively. The
magnitude of the displacements increases with an increasing
central angle. Specifically, when the central angle is between
p
6 — p

3, the displacements for the balanced beam boost rapidly dur-
ing this range. When the central angle is in the scope of p

2 — 2p
3 ,

the displacements raise slowly. It is observed that in the interval
for the value of the angle, i.e., b ¼ 2p

3 —p, the displacement U will
A

η

ηP

ξ

c

h

Fig. 5. Cross-section of the beam.



Table 6
Changes of displacements at point A with central angle at the free end of the balanced
beam under uniformly distributed load pg.

b (Rad) U (m) V (m)

p
6 2.45929 � 10�7 2.34402 � 10�5

p
3 1.66023 � 10�5 2.96367 � 10�4

p
2 4.0291 � 10�5 1.44212 � 10�3

2p
3

5.03119 � 10�5 4.43411 � 10�3

p �1.38272 � 10�4 1.92293 � 10�2

Table 7
Changes of displacements at point A with central angle at the free end of the
unbalanced beam under uniformly distributed load pg.

b (Rad) U (m) V (m)

p
6 2.8056 � 10�6 3.74493 � 10�5

p
3 7.5087 � 10�6 4.81409 � 10�4

p
2 �2.937 � 10�5 2.31487 � 10�3

2p
3

�1.978 � 10�4 6.99784 � 10�3

p �1.34198 � 10�3 2.9487 � 10�2

Table 11
Changes of displacements at point A with cross-section size at the free end of the
unbalanced beam under uniformly distributed load pg.

Height (m) 0.03 0.05 0.07 0.09 0.11

U (�10�5) (m) �5.964 �2.937 �2.029 �1.629 �1.409
V (�10�3) (m) 6.000 2.300 1.200 0.770 0.530
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change to an opposite direction, which indicates that there exists a
zero displacement in n-direction when the central angle arrives at
a ‘‘critical’’ value between b ¼ 2p

3 and b = p. Obviously, the displace-
ment V in the g-direction remains a rapid growth with a large cen-
tral angle corresponding to a ‘‘flexible’’ beam. For the unbalanced
beam, a similar trend is seen. However, for the displacement U,
an increasing central angle in the scope of p

6 — p
3 leads to a slow in-

crease in the displacement while a relatively rapid increase of the
displacements occur when central angle between p

2 — 2p
3 . Moreover,

it is noticed that a ‘‘critical’’ central angle corresponding to the zero
displacement U is in the range of b ¼ p

3 — p
2, which is smaller than

one for the balanced beam. In addition, the maximum values of
the two displacements for the unbalanced beam are larger than
the results for balanced beam, which reflects the effect of exten-
sional–shearing coupling.

Effect of laminate thickness on the displacements is listed in
Tables 8 and 9. The result indicates that the thicker the laminate
is, the smaller the displacements will be. It is also seen that there
is a completely opposite displacement in n-direction for the unbal-
Table 8
Changes of displacements at point A with laminate thickness at the free end of the
balanced beam under uniformly distributed load pg.

Thickness (m) 0.00015 0.00025 0.00035 0.00045 0.00055

U (�10�5) (m) 6.715 4.029 2.878 2.238 1.831
V (�10�3) (m) 2.400 1.400 1.000 0.800 0.700

Table 9
Changes of displacements at point A with laminate thickness at the free end of the
unbalanced beam under uniformly distributed load pg.

Thickness (m) 0.00015 0.00025 0.00035 0.00045 0.00055

U (�10�5) (m) �4.909 �2.937 �2.094 �1.627 �1.331
V (�10�3) (m) 3.900 2.300 1.700 1.300 1.100

Table 10
Changes of displacements at point A with cross-section size at the free end of the
balanced beam under uniformly distributed load pg.

Height (m) 0.03 0.05 0.07 0.09 0.11

U (�10�5) (m) 8.059 4.029 2.416 1.583 1.090
V (�10�3) (m) 3.700 1.400 0.800 0.500 0.300
anced beam in comparison with the case of the balanced beam.
This is resulted from the different lay-up form for the beam. As
shown in Tables 10 and 11, a same situation for the opposite
displacement can be observed for different size of cross-section,
e.g., the height. It is expected that a larger value of the height
corresponds to a smaller displacement.
7. Conclusions

An improved model for analysis of naturally curved and
twisted thin-walled beams made of anisotropic materials is pro-
posed. The effects of initial curvature, torsion of the beams as
well as torsion-related warping, transverse shear deformations
and elastic coupling are included in the proposed model. The
model is verified using the analytical solution and experimental
data and the finite element results available. The calculation
shows that the effect of extensional–shearing coupling from
lay-up configuration produces large maximum values for the
two displacements in the cross-section for the unbalanced beam
in comparison with the results for the balanced beam without
extensional–shearing coupling. Change in the central angle of
the curved beam may induce a change in the direction of dis-
placement. An increase in the laminate thickness or size of
cross-section (e.g., the height, etc.) corresponds to a smaller dis-
placement. Due to the different lay-up forms, the direction of
one transverse displacement may be opposite for the balanced
and unbalanced beams although the global geometry for both
the beams is identical. The proposed theory can be used as an
alternative model for evaluation of structural behaviors of natu-
rally curved and twisted beams.
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