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Analysis of Sinusoidal
Interfacial Wrinkling of an
Anisotropic Film Sandwiched
Between Two Compliant Layers
When a stiff film is bonded to a compliant layer and meanwhile encapsulated by another
compliant layer on top, the film may form wrinkles under applied compressive stress.
Inspired by the recent development of foldable circuit sealed in an encapsulating layer to
improve bendability, unlike the wide study of surface wrinkling in a bilayer system, this
paper presents a study of possible sinusoidal interfacial wrinkling in such sandwich sys-
tem. The film is assumed to be anisotropic with arbitrary orientation of elastic axis while
both layers are isotropic. A linear perturbation analysis is performed to predict critical
membrane stress, wave number and equilibrium amplitude for the onset of interfacial
wrinkles. The effect of parameters such as elastic axis orientation of the film and moduli,
thicknesses, and Poisson’s ratios of the layers on the wrinkling is evaluated in detail. The
results show that compared to two compliant layers, the stiffer and thinner the film is, the
smaller the values of both the critical stress and wave number for wrinkling will be. Espe-
cially, we illustrate three limiting cases: two layers both reach thick-layer limit, two
layers both reach thin-layer limit and one layer reaches thick-layer limit while the other
layer reaches thin-layer limit. Analytical solutions are obtained for first two cases and
numerical solutions are plotted for the third case. It is found that as long as the thin-
layer is near incompressible, the interfacial wrinkles can be suppressed. In addition, the
equilibrium wave modes for the three limiting cases are also given. The resulting solu-
tions for the sandwich system can be reduced to the classic solutions for a bilayer system.
[DOI: 10.1115/1.4027974]

Keywords: thin stiff film, compliant layers, anisotropic material, nonlinear plate theory,
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1 Introduction

Surface wrinkling instability has often been observed in thin
film on compliant substrate systems under compressive stresses,
which exhibits versatile intricate patterns with distinct features
[1–6]. For many applications of such integrated material system,
despite the undesirable fact that wrinkles may lead to failure of
the system by delamination or fracture [7–9], the wrinkling pat-
terns have a huge potential for various applications. For instance,
wrinkles may be used as stretchable and foldable electronics
[10–16], nanoscale/microscale surface patterning [2,4,17,18],
smart adhesion [19], optical lens [20] or a new method to measure
the material properties of thin films [21,22].

A thin stiff film (e.g., aluminum) can be thermally deposited
at a high temperature on a thick compliant substrate (e.g., polydi-
methylsiloxane (PDMS), polystyrene (PS)) [23–26]. When the
film/substrate bilayer system is cooled down, the large thermal
mismatch between the metal and elastomer generates equibiaxial
compressive stresses in the film. When a critical temperature is
reached, the film starts to wrinkle. Depending on stress state and
boundary conditions, the resulting wrinkling patterns may either
show highly ordered features such as sinusoidal stripes, zigzag
herringbone, hexagonal, checkerboard, or disordered labyrinth
[5,25,27]. Some theoretical studies have also been developed to
understand the formation of surface wrinkling [28]. Cerda and
Mahadevan used scaling analysis to determine the critical

condition for wrinkling for a stretched thin membrane [29,30].
Chen and Hutchinson [23,24], Huang and Suo [31,32], Im and
Huang [33,34], and Huang [35] have calculated the critical wave-
length and equilibrium amplitude of sinusoidal wrinkles by linear
perturbation analysis. In addition, Jiang et al. studied the buckling
of thin film on compliant substrate under finite deformation and
also considered the finite width effect of thin film [13–15].

In the fabrication of stretchable and foldable devices, sandwich
system is of particular importance. To avoid delamination of the
circuit (film/layer system) and/or fracture of metal interconnects
(film) under high bending, an additional encapsulating layer is
introduced on top of the circuit to improve adhesion and alleviate
the strain level because such layer/film/layer sandwich system shifts
the neutral mechanical plane to the film plane [11]. For example,
Kim et al. [11] have shown excellent applications that they success-
fully fabricated polyimide/single-crystalline silicon complementary
metal-oxide semiconductor/polyimide (PI/Si-CMOS/PI) foldable
circuit, which not only exhibit good electrical properties but also
show remarkable bendability. However, recent studies show that
the additional encapsulation may decrease the strechability of sand-
wiched system [36].

Theoretical studies of surface wrinkling of sandwich system
may be traced back to half century ago when face wrinkling of a
structured sandwich panel (face strut/core/face strut) was analyzed
as a form of local elastic instability [37,38]. However, unlike the
structured sandwich panel, we adopt the design of layer/film/layer
sandwich system with the material model for film is more general,
that is, a stiff film (e.g., composite material) of anisotropic elastic-
ity with arbitrary elastic axis orientation is well bonded between
two compliant layers (e.g., elastomers) of isotropic elasticity,
which are in turn bonded to rigid supports, as shown in Fig. 1(a).
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The film forms pattern of wrinkles when the compressive stress
exceed critical stress, as shown in Fig. 1(b). The thicknesses of
two layers are taken to be finite and can be varied by orders of
magnitude.

In this paper we focus on analysis of sinusoidal interfacial wrin-
kling of an anisotropic stiff film sandwiched between two
isotropic compliant layers. The paper is organized as follows. In
Sec. 2, the von Karman-type nonlinear governing equations for
the anisotropic elastic film with arbitrary elastic orientation are
formulated. In Sec. 3, we perform linear perturbation analysis,
from which the critical membrane stress, wave number and equi-
librium amplitude for the onset of wrinkles with variations of elas-
tic axis orientation of the film and moduli, thicknesses, and
Poisson’s ratios of the layers are numerically presented. In Sec. 4,
we illustrate three special cases: two layers are both thick, two
layers are both thin, and one layer is thick while the other layer is
thin, respectively. Analytical expressions for the critical stress,
wave number and wavelength can be derived in first two cases.
The equilibrium wave modes for the three limiting cases are also
obtained. Finally, some conclusions are drawn in Sec. 5.

2 Governing Equations for Anisotropic Elastic Film

With Arbitrary Elastic Axis Orientation

According to the theory of linear elasticity, the stress and strain
relation for anisotropic material can be written in form of the
generalized Hooke’s law

rij ¼ Cijklekl (1)

where Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij are 21 independent elastic con-
stants and subscripts i; j; k; l take values of 1–3 (refer to the elastic
axis coordinate). A set of three elastic axis of anisotropic material is
shown in Fig. 2(a), which has an arbitrary orientation angle h relative
to the Cartesian coordinate. If there is an elastic symmetrical plane
about z axis (3-direction in elastic axis coordinate), then the aniso-
tropic model can be written in the symmetric matrix form of

r11

r22

r33

r23

r13

r12

2
66666664

3
77777775
¼

C11 C12 C13 0 0 2C16

C12 C22 C23 0 0 2C26

C13 C23 C33 0 0 2C36

0 0 0 2C44 2C45 0

0 0 0 2C54 2C55 0

2C16 2C26 2C36 0 0 2C66

2
66666664

3
77777775

e11

e22

e33

e23

e13

e12

2
66666664

3
77777775
(2)

The film is modeled as a thin elastic plate. The classic plate
theory provides all 3-direction stress components equal to zero,
i.e., r13 ¼ r23 ¼ r33 ¼ 0 [33]. Hence, the in-plane stress and
strain relation reduces to

r11

r22

r12

2
64

3
75 ¼

�C11
�C12 2 �C16

�C12
�C22 2 �C26

2 �C16 2 �C26 2 �C66

2
64

3
75

e11

e22

e12

2
64

3
75 (3)

where �Crs ¼ Crs � Cr3Cs3=C33, r ¼ 1; 2; or 6: For an isotropic

elastic plate, the reduced elastic constants are �C11 ¼ �C22

¼ Ef= 1� �2
f

� �
; �C12 ¼ Ef�f= 1� �2

f

� �
; �C16 ¼ �C26 ¼ 0, and

�C66 ¼ Ef= 2 1þ �fð Þ½ �; where Ef and �f are Young’s modulus and
Poisson’s ratio.

The stress–strain relation in Eq. (3) is respect to the elastic prin-
cipal coordinates (1,2) which can be transformed to the elastic
constants with respect to the Cartesian coordinates (x; y). The
transformation formula for the stresses is as follows:

rxx ¼ r11cos2hþ r22sin2h� 2r12sinhcosh

ryy ¼ r11sin2hþ r22cos2hþ 2r12sinhcosh

rxy ¼ r11sinhcosh� r22sinhcoshþ r12 cos2h� sin2h
� �

(4)

The strain components transformation has similar form as stress
components transformation provided that the stress components
are replaced with corresponding strain components. We inversely
express the relation from strain components at Cartesian coordi-
nate to strain components at elastic axis coordinate

e11 ¼ exxcos2hþ eyysin2hþ 2exysinhcosh

e22 ¼ exxsin2hþ eyycos2h� 2exysinhcosh

e12 ¼ �exxsinh cos hþ eyysinhcoshþ exy cos2h� sin2h
� � (5)

Substituting Eqs. (3) and (5) into Eq. (4), the elastic constants at
Cartesian coordinates are obtained. For simplicity, here, we con-
sider orthotropic material which has three elastic symmetrical
planes. The material model can be rewritten as

rxx

ryy

rxy

2
4

3
5 ¼ C11 C12 2C16

C12 C22 2C26

2C16 2C26 2C66

2
64

3
75 exx

eyy

exy

2
4

3
5 (6)

Fig. 1 (a) Schematics of undeformed sandwich system that a stiff film is in between of two finite-thickness compliant layers
which in turn are bonded to rigid supports. (b) Deformed sandwich system that film forms interfacial wrinkles with wavelength
described as k and the wave number can be calculated as k 5 2p=k.
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where the elastic constants at Cartesian coordinates can be
expressed as

C11 ¼ �C11 cos4 hþ 2 �C12 þ 2 �C66ð Þ sin2 h cos2 hþ �C22 sin4 h

C12 ¼ �C11 þ �C22 � 4 �C66ð Þ sin2 h cos2 hþ �C12 sin4 hþ cos4 h
� �

C22 ¼ �C11 sin4 hþ 2 �C12 þ 2 �C66ð Þ sin2 h cos2 hþ �C22 cos4 h

2C16 ¼ 2 �C11 � �C12 � 2 �C66ð Þ sin h cos3 h

þ 2 �C12 � �C22 þ 2 �C66ð Þ sin3 h cos h

2C26 ¼ 2 �C11 � �C12 � 2 �C66ð Þ sin3 h cos h

þ 2 �C12 � �C22 þ 2 �C66ð Þ sin h cos3 h

2C66 ¼ 2 �C11 � 2 �C12 þ �C22 � 2 �C66ð Þ sin2 h cos2 h

þ 2 �C66 sin4 hþ cos4 h
� �

Since the elastic stiffnesses C16 and C26 are negligible com-
pared to other elastic stiffnesses [39], we will not consider the
coupling between stretch and shear, and consequently set C16 and
C26 equal to zero. The stress–strain relation can be further simpli-
fied as

rxx

ryy

rxy

2
64

3
75 ¼

C11 C12 0

C12 C22 0

0 0 2C66

2
664

3
775

exx

eyy

exy

2
64

3
75 (7)

In the flat state, let the strain components in the film be e0
xx, e0

yy,
and e0

xy. In the wrinkling state, let the deflection of the film be w,
and the in-plane displacements be ux and uy, the Lagrangian strain
components in the film can be written as

exx ¼ e0
xx þ

@ux

@x
þ 1

2

@w

@x

� �2

eyy ¼ e0
yy þ

@uy

@y
þ 1

2

@w

@y

� �2

exy ¼ e0
xy þ

1

2

@ux

@y
þ @uy

@x

� �
þ 1

2

@w

@x

� �
@w

@y

� �
(8)

where the first term represents prestrain, the second term repre-
sents in-plane displacement gradient, and the third term represents
rotation caused by the deflection.

Similar to von Karman nonlinear plate theory [40], we can
obtain the equilibrium equations for the anisotropic elastic film
with arbitrary elastic orientation

t3

12
C11

@4w

@x4
þ 2C12 þ 4C66

� � @4w

@x2@y2
þ C22

@4w

@y4

� 	

� t rxx
@2w

@x2
þ 2rxy

@2w

@x@y
þ ryy

@2w

@y2

� �
¼ Dp (9)

@rxx

@x
þ @rxy

@y
¼ Tx

t

@rxy

@x
þ @ryy

@y
¼ Ty

t

(10)

where Dp ¼ pu � pl is the pressure (negative normal direction)
difference exerted by upper and lower layers. Following the justi-
fication of Ref. [41], we safely remove the resultant shear stress
component Tx and Ty at the interface between film and layers in
Eq. (10). Hence, rxx and ryy are uniform in the film when rxy is
absent.

3 Linear Perturbation Analysis

The lateral deflection of the film takes the sinusoidal form

w ¼ A cos kxð Þ (11)

where k is wave number and A is amplitude. Using Eq. (9), the
one dimensional linearized bucking form can be written as

t3

12
C11

@4w

@x4
� tr0

xx

@2w

@x2
¼ Dp (12)

where r0
xx is the membrane stress in the film caused by prestrain

e0
xx. Inserting Eq. (11) into Eq. (12), yields

t3

12
k4C11wþ trxxk2w ¼ Dp (13)

in which Dp can be determined from pu and pl which are obtained
by solving the boundary value problem in-plane strain condition.
The boundary conditions are considered as follows: the lower
layer whose top surface and upper layer whose bottom surface are
subjected to displacement w ¼ A cos kxð Þ and zero shear stress,
while the lower layer whose bottom surface and upper layer

Fig. 2 (a) Schematics of in-plane elastic axis of anisotropic material labeled as 1; 2 and Cartesian coordinates as global coor-
dinates labeled as x ; y . The rotate angle between the two set of coordinates is h, which is also defined as elastic axis orienta-
tion angle. (b) The in-plane modulus of film in x direction with variation of h.
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whose top surface are perfectly constrained to the rigid supports.
The boundary value problem can be solved by separation of Airy
stress function in the form of F x; zð Þ ¼ f zð Þ cos kxð Þ, one can
obtain the analytical solutions (see the Appendix for details) as

pu kHu; �uð Þ ¼ guEukw (14)

pl kHl; �lð Þ ¼ glElkw (15)

where u and l denote upper layer and lower layer, respectively,
and gu, gl can be found in Eq. (A12). Combination of Eqs.
(13)–(15) gives

r0
xx

C11

¼
gu

Eu

C11

� gl

El

C11

� ktð Þ3

12

kt
(16)

Enforcing the first derivative of Eq. (16) with respect to k equals
to zero

@r0
xx

@k
¼ 0 (17)

Thus, the critical wave number kc is the solution of Eq. (17) and
the critical membrane stress rc

xx ¼ rc
xx kcð Þ. Here, the solution is

provided for the case that �r0
xx > �rc

xx. Since Eq. (17) is highly
nonlinear, it is difficult to obtain explicit solutions for kc and rc

xx.

Instead, we numerically plot normalized membrane stress r0
xx=C11

as a function of normalized wave number kt with variations of
elastic axis orientation of the film and moduli, thicknesses, and
Poisson’s ratios of two layers in Fig. 3. The critical membrane

stress can be found by searching the extreme value on the curve
(the dash line in Fig. 3(a) as an example).

Figure 3(a) plots normalized membrane stress r0
xx=C11 as a

function of normalized wave number kt with variations of moduli
of layers. Because the upper and lower layer is symmetric, with-
out loss of generality, we fix the modulus of lower layer and vary
the modulus of upper layer. It is noted that for certain moduli of

the film and lower layer (e.g., El ¼ 1 GPa and C11 ¼ 25:12 GPa,
dot lines), as the modulus of upper layer decreases until vanishes
(recovers to a bilayer system), the critical membrane stress and
wave number both decrease. Moreover, if the modulus of lower
layer further decreases (El ¼ 0:01GPa) and the modulus of upper
layer is kept unchanged, both the critical wave number and mem-
brane stress further drop dramatically (dotted–dashed lines). In
the limiting case, when both layers vanish, there is no extreme
value. The film deforms homogeneously and is unable to form
wrinkles due to loss of constraint (solid line). Figure 3(b) shows

normalized membrane stress r0
xx=C11 as a function of normalized

wave number kt with variations of thicknesses of layers. As thick-
ness of the upper layer decreases (Hu ¼ 100t drops to 0:1t) while
the thicknesses of film t and the lower layer Hl ¼ 0:1t are fixed
(dotted lines), Hl ¼ t (dotted–dashed lines) and Hl ¼ 10t (solid
lines), respectively, both the critical wave number and membrane
stress increase. When the thickness of film is ten times, the thick-
ness of upper and lower layers (e.g., Hu ¼ Hl ¼ 0:1t; dotted line),

rc
xx=C11 ¼ �0:2 and kct ¼ 1:1, which is almost ten times the criti-

cal membrane stress and wave number for the case Hu ¼ Hl ¼ 10t
(solid line). In addition, we also note that for Hl ¼ t, the critical
condition is almost the same when the thickness of the upper layer
is 10t and 100t, which means thick-layer limit of the upper layer
is 10t when Hl ¼ t. The Poisson’s ratios of layers reflect

Fig. 3 The normalized membrane stress as a function of normalized wave number with variations of two layers’ (a) moduli, (b)
thicknesses, (c) Poisson’s ratios, and (d) elastic axis orientation angle of the film
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compressibility of material. The larger Poisson’s ratio seems to
stiffen the layers, giving rise to higher critical membrane stress
and wave number (Fig. 3(c)). The extreme critical condition is
reached when both layers are near incompressible (dot line).
Moreover, the elastic axis orientation of the film only affects the
modulus. Figure 2(b) plots the in-plane modulus of film in x direc-
tion with variation of h. Since h ¼ 0 and h ¼ 1:162 correspond to
maximum and minimum values of modulus, respectively, hence,
both critical membrane stress and wave number reach minimum
values when h ¼ 0 and reach their maximum values when
h ¼ 1:162, the tendency is shown in Fig. 3(d). In summary, it is
clear that interfacial wrinkles are more easily to form when the
film is stiffer and thinner to both layers.

Next, we turn to determine the equilibrium amplitude of interfa-
cial wrinkles. The amplitude of wrinkles in equilibrium can be
captured by the constraint between the film and the two layers,
which means the horizontal deformation of the film should be
compatible with the deformations of the two layers, namely,Ð 2p=k

0
@ ux � u0

x

� �
=@x dx ¼ 0. Under combination of Eq. (7) with

Eq. (8), we can further write

1

C11

�r0
xx þ rc

xx

� �
¼ kc

4p

ð2p
kc

0

dw

dx

� �2

dx ¼ k2
c

4
A2 (18)

The expression for amplitude can be written as

A ¼ 2

kc

�r0
xx þ rc

xx

C11

 !1
2

(19)

In Fig. 4, we fix modulus and thickness of the film

(El ¼ 10�2 GPa and 10�4GPa, respectively) and plot the critical

normalized membrane stress rc
xx=C11, wave number kct, and the

equilibrium amplitude A=t as a function of thickness ratio of
layers to the film, H=t (H ¼ Hu ¼ Hl), with variations of both
moduli and Poisson’s ratios of the layers for �u ¼ �l ¼ 0:3 (left
column) and �u ¼ 0:1; �l ¼ 0:49 (right column), respectively. As
seen from first two rows in Fig. 4, it is readily to see that as thick-
ness ratio of the layer to film increases or modulus of upper layer
decrease (for a certain modulus of lower layer), interfacial wrin-
kles set in at the smaller value of the membrane stress and wave
number. It is also noted that the normalized amplitude has two
plateaus with variation of H=t, which are associated with the
thick-layer limit and thin-layer limit. When the value of H=t goes
beyond the range of 10–100, it seems that the layers’ thicknesses
approach the thick-layer limit. Both the membrane stress and
wave number keep constant and have minimum value. For exam-

ple, in thick-layer limit, when El ¼ 10�4 GPa;Eu ¼ 10�5 GPa,
interfacial wrinkles set in when the membrane stress only exceeds

about �10�4, the wavelength (k ¼ 2p=k) is hundred times the
thickness of film and the equilibrium amplitude is in the order of

film thickness. Furthermore, when Eu drops down to 10�5 GPa

and 10�3 GPa for the case El ¼ 10�4 GPa and El ¼ 10�2 GPa,
respectively, the existence of upper layer becomes unimportant
and the sandwich system resembles the bilayer system. However,
in the thin layers limit, the constraints of rigid support at boundary
of both layers take effects which strongly restrict the deformation.
As a result, both layers get stiffer. Meanwhile, if the layers are
also near incompressible, they become even stiffer (see Fig. 3(c)).
Consequently, both the critical membrane stress and wave number
have even higher values and the equilibrium amplitude has a
smaller value.

The effects of elastic axis orientation angle of the film on the
critical membrane stress and wave number with variations of
moduli, thicknesses, and Poisson’s ratios of the layers are dis-
played in Fig. 5. Due to the same mechanism that the stiffer film
has lower critical membrane stress and wave number, we expect

that for certain set of moduli, thicknesses, and Poisson’s ratios of
the layers, the smallest and biggest critical membrane stresses and

wave numbers occur when maximum (h ¼ 0;C11 ¼ 25:12 GPa)

and minimum (h ¼ 1:162;C11 ¼ 6:425 GPa) moduli of film are
reached. Nevertheless, if the moduli for both layers become
smaller (or Poisson’s ratios become smaller), or thicknesses
become bigger, the difference between the maximum and mini-
mum values is smaller and the curves appear to be flatter.

4 Three Limiting Cases

This section focuses on three limiting cases: two layers both
reach thick-layer limit (e.g., Si-CMOS circuit that uses a dual neu-
tral plane design), two layers both reach thin-layer limit, and one
layer reaches thick-layer limit while the other layer reaches thin-
layer limit (e.g., a metal film deposited on thick substrate
sealed by a thin layer), which may find diverse engineering
applications.

4.1 Two Layers Both Reach Thick-Layer Limit. Since both
layers are thick compared to the film, Hu=t!1;Hl=t!1, the
only length scale in the problem is wrinkle wavelength, so gu and
gl must be constant. Equation (A12) gives gu ¼ �1=2 and
gl ¼ 1=2 which are substituted back to Eq. (16). Solve Eq. (17)
for kct

kct ¼
3 Eu þ El

� �
C11

" #1
3

(20)

which is the critical normalized wave number of the interfacial
wrinkles between two thick layers. The corresponding critical
stress for the wrinkling can be obtained by taking Eq. (20) back to
Eq. (16)

rc
xx

C11

¼ � 1

4

3 Eu þ El

� �
C11

" #2
3

(21)

Inserting Eq. (20) and Eq. (21) into Eq. (19), the equilibrium am-
plitude is

A

t
¼ r0

xx

rc
xx

� 1

� �1
2

(22)

Relations (20) and (21) show that both the critical membrane
stress and wave number depend on the modulus ratio of the film
and layers, and the latter also depends on the thickness of the film.
Further, they are independent of the prestress. Relation (22) indi-
cates the wrinkle amplitude exists only when the prestress exceeds
the critical stress.

4.2 Two Layers Both Reach Thin-Layer Limit. In contrary
to the first case, if thicknesses of two layers approach zero, which
are thin-layer limit, we take Hu=t! 0;Hl=t! 0, which

gives gu ¼ � 1� �uð Þ2= 1� 2�uð Þ
h i

kHuð Þ�1
, and gl ¼ 1� �lð Þ2=

h
1� 2�lð Þ� kHlð Þ�1

. Solution for Eq. (17) gives

kct ¼ 12t 1� �uð Þ2Eu

Hu 1� 2�uð ÞC11

þ 12t 1� �lð Þ2El

Hl 1� 2�lð ÞC11

" #1
4

(23)

which is the critical normalized wave number for the interfacial
wrinkles between two thin layers. Substituting Eq. (23) back
to Eq. (16) yields the corresponding critical stress for the
wrinkling
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rc
xx

C11

¼ � 1� �uð Þ2Eut

3 1� 2�uð ÞC11Hu

þ 1� �lð Þ2Elt

3 1� 2�lð ÞC11Hl

" #1
2

(24)

Inserting Eqs. (23) and (24) into Eq. (19) gives the equilibrium
amplitude as

A

t
¼ 2

3

r0
xx

rc
xx

� 1

� �� 	1
2

(25)

Unlike the thick layers limit, relations (23) and (24) show that
the critical membrane stress and wave number depend not only on
modulus ratio of the film and layers but also Poisson’s ratios of
both layers and thicknesses of all the three layers. The equilibrium
amplitude differs by a precoefficient,

ffiffiffi
6
p

=3. Again, the wrinkle

amplitude exists only when the prestress exceeds the critical
stress.

The relations (20)–(25) are indicated in Fig. 4. It is interesting
to note that Eq. (24) excludes the incompressibility (� ¼ 0:5).
However, gu and gl in Eq. (A12) do not have this limitation and
the limit value can be still obtained by putting � ¼ 0:5. Since this
procedure has been discussed elsewhere [41], we will not discuss
in this paper. Rather, we simply let � ¼ 0:49 as near incompressi-
bility in Fig. 4. Attention is paid that for thin-layer limit, the
power relation of Eq. (23) is from 1/4 to near 1/2 and the power
relation of Eq. (24) is from 1/2 to near 1, while for thick-layer
limit, no adjustment is needed. Moreover, relations (20)–(25) are
analogues to the results of sinusoidal wrinkling of film on a thick
or thin substrate produced by Refs. [24] and [41] but add one
more term contributed from upper layer, and the expression for
the equilibrium amplitude is exactly the same. Furthermore, if one

Fig. 4 The critical normalized membrane stress, wave number and the equilibrium amplitude as a function of thicknesses ratio
of the layers and film with variations of both layers’ moduli. Left column shows mu 5 ml 5 0:3 and right column shows
mu 5 0:1; ml 5 0:49. The insets show the close-up view of rectangular region in the figure.
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of the layers is absent (e.g., Eu ¼ 0), the sandwich system reduces
to a bilayer system. When the film is isotropic, one can obtain

C11 ¼ Ef and relations (20)–(25) recover the classic relations for
the thick-substrate limit and thin-substrate limit [41].

4.3 One Layer Reaches Thick-Layer Limit While the
Other Layer Reaches Thin-Layer Limit. It may be another pos-
sible engineering application that a film lays on a thick substrate
and is in turn covered by a thin skin on its top. In this case, we
take the upper layer to be thin and the lower layer to be thick. The

reverse case is similar. Likewise, gu ¼ �½ 1� �uð Þ2= 1� 2�uð Þ�
kHuð Þ�1

and gl ¼ 1=2. The analytical solution can be obtained by
the same procedure described in above two cases, but the

expression is quite lengthy and complicated. Normalized critical

membrane stress rc
xx=C11 and normalized critical wave number kct

as functions of elastic axis orientation angle of film with varia-
tions of moduli and Poisson’s ratios of the layers are displayed in
Fig. 6.

The smallest and biggest value of critical membrane stresses
and wave numbers are still found when maximum and minimum
moduli of film are reached where h ¼ 0 and h ¼ 1:162, respec-
tively. In comparison to the thick layers limit and thin layers limit
(relations (20), (21), (23), and (24)) by fixing the same material
properties of film and both layers (see Fig. 6 for details), we find
that the critical membrane stress and wave number are smaller
than that for thin layers limit but bigger than that for thick layers

limit. For example, when h ¼ 0;El ¼ Eu ¼ 10�2 GPa;�l

Fig. 5 The effects of elastic axis orientation angle of film on the critical membrane stress and wave number with variations of
moduli, thicknesses, and Poisson’s ratios of both layers
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¼ �u ¼ 0:3; t ¼ 0:1m;Hu ¼ 0:001t; the critical membrane stress
and wave number for a film between thick and thin layers are
�0.4228 and 1.593, respectively; for thick layers limit are
�0.0048 and 1.379, respectively; for thin layers limit are �0.5977
and 1.894, respectively. This implies that the wrinkles are
extremely difficult to form as long as one of the layers is very thin
since the critical membrane stress for thin layers limit is hundred
times bigger than that for thick layers limit. The reason is that the
constraint from rigid supports is quite strong for a thin layer so
that constrains the interfacial deformation. As a result, a large
value of energy is required to wrinkle a thin layer, so is the larger
critical membrane stress. Nevertheless, the weak constraint from
rigid supports on interface between the film and thick layer needs
only a small energy to wrinkle the surface of a thick layer while
the remaining part of thick layer far from the surface is unaf-
fected. Consequently, only a small critical membrane stress is
needed to cause wrinkles for film between the thick layers. More-
over, we find if the lower thick layer is near incompressible, the
higher the Poisson’s ratio of upper thin layer is, the higher critical
membrane stress and wave number will be (solid lines in the last
row of Fig. 6). In contrary, for the reverse case, an interesting fea-
ture is captured. As long as the upper thin film is near incompres-
sible, the critical membrane stress and wave number are
unchanged no matter the lower layer is compressible or incom-
pressible, and both values are far larger than the former case (dash
line in the last row of Fig. 6). This is because the constraint by the
stiffened thin layer enhanced by incompressibility is so over-
whelming that compressibility for the thick layer appears insignif-
icant. This feature may be used as a method to suppress
the surface wrinkling. In addition, we also plot the equilibrium

wave modes for the three limiting cases where Eu=C11 ¼ El=

C11 ¼ 0:01, t=Hu ¼ t=Hl ¼ 10, �u ¼ �l ¼ 0:3, r0
xx=C11 ¼ �0:5, as

shown in Fig. 7. It is obvious to see that when both layers are
thick, the wave number is small (kt ¼ 0:3915) and the amplitude
is large (A=t ¼ 3:4712). When both layers are thin, the wave num-
ber is large (kt ¼ 1:3094) and the amplitude is small
(A=t ¼ 0:7069). If one layer is thick and the other is thin, the
wave number (kt ¼ 1:1075) and amplitude (A=t ¼ 0:9782) is in
between the values, respectively, for the above two case.

Fig. 6 The normalized critical membrane stress and wave number as a function of elastic axis orientation angle of film with var-
iations of moduli and Poisson’s ratios of both layers for a film sandwiched between a thick layer and a thin layer

Fig. 7 The equilibrium wave modes for the three limiting cases

when Eu=C11 5 E l=C11 5 0:01, t=Hu 5 t=Hl 5 10, mu 5 ml 5 0:3,

r0
xx=C11 5 � 0:5
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5 Conclusions

The paper presents a theoretical analysis of interfacial sinusoi-
dal wrinkling of anisotropic film sandwiched between two compli-
ant layers. A linear perturbation analysis is conducted to
determine the critical membrane stress and wave number as well
as equilibrium amplitude with variations of elastic axis orientation
of the film and moduli, thicknesses, and Poisson’s ratios of the
two layers. Interfacial wrinkles set in when the membrane stress
reaches its critical value. Analysis of effect of various parameters
on wrinkling is done. The results show that as the film becomes
much stiffer and thinner than that of the two layers, the wrinkles
set in at a smaller critical membrane stress and wave number. In
addition, we illustrate three limiting cases: two layers both reach
thick-layer limit, two layers both reach thin-layer limit and
one layer reaches thick-layer limit while the other layer reaches
thin-layer limit to show potential use of such sandwich system.
Analytical solutions are obtained for the first two cases and nu-
merical solution is presented for the third case. It is found that if
the thin layer is near incompressible, interfacial wrinkles can be
suppressed. The equilibrium wave modes for the three limiting
cases are also illustrated. The resulting solutions for the sandwich
system can be reduced to the classic solutions available for a
bilayer system.
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Appendix

Boundary Value Problem of Elastic Field

in Two Layers

Due to the imposed periodic displacement boundary condition
at the interface between film and both layers, the Airy stress func-
tion can be separated in the form of

F x; zð Þ ¼ f zð Þ cos kxð Þ (A1)

and the function satisfies

r2r2F x; zð Þ ¼ 0 (A2)

Inserting Eq. (A1) to Eq. (A2), we obtain the characteristic
equation

k4F� 2k2F 2ð Þ þ F 4ð Þ ¼ 0 (A3)

where F ið Þ means i th derivative of F with respect to z. The general
solution can be written as

F ¼ D1 cosh kzð Þ þ D2 sinh kzð Þ þ D3z cosh kzð Þ½
þD4z sinh kzð Þ� cos kxð Þ (A4)

where D1; D2; D3; D4 are coefficients to be determined by
boundary condition. Using Eq. (A4), the stress components can be
expressed as

rxx ¼ k2 D1 cosh kzð Þ þ D2 sinh kzð Þ þ D3z cosh kzð Þ þ D4z sinh kzð Þ þ 2

k
D3 sinh kzð Þ þ D4 cosh kzð Þ½ �

� �
cos kxð Þ

rzz ¼ �k2 D1 cosh kzð Þ þ D2 sinh kzð Þ þ D3z cosh kzð Þ þ D4z sinh kzð Þ½ � cos kxð Þ

rxz ¼ k2 D1 sinh kzð Þ þ D2 cosh kzð Þ þ D3z sinh kzð Þ þ D4z cosh kzð Þ þ 1

k
D3 cosh kzð Þ þ D4 sinh kzð Þ½ �

� �
sin kxð Þ

(A5)

The displacement components are obtained as

u ¼ 1

2l

D1k cosh kzð Þ þ D2k sinh kzð Þ

þD3 2 1� �ð Þ sinh kzð Þ þ kz cosh kzð Þ½ � þ D4 2 1� �ð Þ cosh kzð Þ þ kz sinh kzð Þ½ �

( )
sin kxð Þ

w ¼ � 1

2l

D1k sinh kzð Þ þ D2k cosh kzð Þ

þD3 2� � 1ð Þ cosh kzð Þ þ kz sinh kzð Þ½ � þ D4 2� � 1ð Þ sinh kzð Þ þ kz cosh kzð Þ½ �

( )
cos kxð Þ

(A6)

The boundary conditions for lower and upper layers are listed below:

Lower layer

u ¼ w ¼ 0 at z ¼ �t=2� Hl

w ¼ A cos kxð Þ; rxz ¼ 0 at z ¼ �t=2
(A7)

Upper layer

u ¼ w ¼ 0 at z ¼ t=2þ Hu

w ¼ A cos kxð Þ; rxz ¼ 0 at z ¼ t=2
(A8)
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Inserting Eqs. (A5), (A6) into Eqs. (A7), (A8), D1; D2; D3; D4 are totally determined as follows:

Lower layer

Dl
1 ¼

Ml
1 cosh 2kHl þ

kt

2

� �
þMl

2 cosh
kt

2

� �
þMl

3 sinh
kt

2

� �
þMl

4 sinh 2kHl þ
kt

2

� �
�2Ml

1 sinh 2kHlð Þ þ 8kHl

AEl

k

Dl
2 ¼

Ml
1 sinh 2kHl þ

kt

2

� �
þMl

2 sinh
kt

2

� �
þMl

3 cosh
kt

2

� �
�Ml

4 cosh 2kHl þ
kt

2

� �
�2Ml

1 sinh 2kHlð Þ þ 8kHl

AEl

k

Dl
3 ¼

2kHl cosh
kt

2

� �
� sinh

kt

2

� �
�Ml

1

2
sinh 2kHl þ

kt

2

� �
�Ml

1 sinh 2kHlð Þ þ 4kHl

AEl

k

Dl
4 ¼

2kHl sinh
kt

2

� �
� cosh

kt

2

� �
�Ml

1

2
cosh 2kHl þ

kt

2

� �
�Ml

1 sinh 2kHlð Þ þ 4kHl

AEl

k

(A9)

Upper layer

Du
1 ¼

Mu
1 cosh 2kHu þ

kt

2

� �
þMu

2 cosh
kt

2

� �
þMu

3 sinh
kt

2

� �
þMu

4 sinh 2kHu þ
kt

2

� �
2Mu

1 sinh 2kHlð Þ � 8kH

AEu

k

Du
2 ¼

Mu
1 sinh 2kHu þ

kt

2

� �
þMu

2 sinh
kt

2

� �
þMu

3 cosh
kt

2

� �
þMu

4 cosh 2kHu þ
kt

2

� �
�2Mu

1 sinh 2kHuð Þ þ 8kHu

AEu

k

Du
3 ¼

2kHu cosh
kt

2

� �
� sinh

kt

2

� �
�Mu

1

2
sinh 2kHu þ

kt

2

� �
�Mu

1 sinh 2kHuð Þ þ 4kHu

AEu

k

Du
4 ¼

2kHu sinh
kt

2

� �
� cosh

kt

2

� �
�Mu

1

2
cosh 2kHu þ

kt

2

� �
Mu

1 sinh 2kHuð Þ � 4kHu

AEu

k

Mr
1 ¼ 6� 8�r; Mr

2 ¼ 10� 24�r þ 16�2
r þ 2Hrk

2tþ 4 kHrð Þ2

Mr
3 ¼ �k 4Hr þ tð Þ; Mr

4 ¼ �kt 3� 4�rð Þ; ðr ¼ l; uÞ

(A10)

in which subscript l and u indicates lower layer and upper layer.
E ¼ E=1� �2ð Þ is the plane strain modulus. Hence, the interfacial
pressure can be evaluated by substituting Eqs. (A9) and (A10)
into Eq. (A5)

pl ¼ rl
zz


z¼�t=2

¼ glkwEl;

pu ¼ ru
zz


z¼t=2
¼ gukwEu

(A11)

where

gl ¼ � Dl
1 cosh

kt

2

� �
� Dl

2 sinh
kt

2

� �
� Dl

3

t

2
cosh

kt

2

� ��

þDl
4

t

2
sinh

kt

2

� �	
AEl

k

� ��1

gu ¼ � Du
1 cosh

kt

2

� �
þ Du

2 sinh
kt

2

� �
þ Du

3

t

2
cosh

kt

2

� ��

þ Du
4

t

2
sinh

kt

2

� �	
AEu

k

� ��1

(A12)
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