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ABSTRACT

Quantifying joint deformity in people with rheumatoid (RA) and psoriatic arthritis (PsA) remains
challenging. Here, we demonstrate a new method to measure bone erosions and abnormal peri-
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osteal growths, based on the difference between a predicted healthy and actual diseased joint

surface. We optimized the method by creating and measuring artificial bone erosions and
growths. Then we measured 46 healthy and diseased patient surfaces. We found average sensi-
tivity errors of <0.27mm when measuring artificial erosions and growths. Patients had signifi-
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cantly more bone erosion than healthy subjects. Surface based outcomes are a novel way to

interpret and quantify bone changes in PsA and RA.

1. Introduction

Psoriatic arthritis (PsA) and rheumatoid arthritis
(RA) are chronic inflammatory diseases occurring in
patients with autoimmune disorders and psoriasis
(Gladman, 2009; Cantini et al., 2010; Schett and
Gravallese, 2012). A combination of mechanical stress
and inflammation in individuals with PsA results in
the formation of periosteal bone growth (osteophytes
or enthesophytes) at tendon/ligament insertion sites,
and articular erosions within the joints (Frank, 1998;
Cantini et al., 2010; Simon et al., 2015). Erosion for-
mation typically occurs in early disease at the prox-
imal enthesis, but in later stages, spur formation
occurs at the distal end of the ligament attachment
site (McGonagle et al., 2015). The frequency and size
of the abnormalities and the number of affected joints
are associated with poor clinical outcomes (Schett and
Gravallese, 2012). Some individuals exhibit extremely
destructive and disfiguring forms of the disease with
erosions and periosteal bone formation leading to dis-
ability (Gladman et al., 1987; Duarte et al., 2012). The
metacarpophalangeal joints of the hand are common
areas for bone changes. Because these changes are

irreversible (Solomon et al.,, 2017), earlier detection
and prevention may lead to improved patient care.
Radiographic imaging is the most common modal-
ity to identify and assess features of both RA and PsA
including erosions, joint space narrowing, bony prolif-
eration and formation (Rahman et al, 2001; Ory
et al., 2005). However, radiography has low sensitivity
for the detection of degenerative features in early dis-
ease stages, and these features are often poorly defined
due to the progression of periosteal bone formation
adjacent to erosions (Ory et al., 2005). Computed
tomography (CT), magnetic resonance imaging (MRI)
and ultrasound imaging are gaining clinical popular-
ity. These technologies are capable of detecting early
stages of disease and monitoring joint changes during
disease progression with greater sensitivity than that
of plain radiographs (Ostergaard, 2005; Boutry et al.,
2007; Baillet et al., 2011; Huizinga et al., 2011; Zayat
et al, 2014). Outcome Measures in Rheumatoid
Arthritis Clinical Trials (OMERACT) has developed
Psoriatic Arthritis Magnetic Resonance Imaging Score
(PsAMRIS) for the evaluation of joint damage in PsA
in hands using MRI (@stergaard et al., 2009; Boyesen
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et al., 2011) evaluating multiple joints and patient dis-
ability. Similarly, Rheumatoid Arthritis Magnetic
Imaging Score (RAMRIS) exists for evaluating RA
(Haavardsholm et al., 2005; Ostergaard, 2005).
High-resolution peripheral computed tomography
(HRpQCT) is a low radiation dose imaging technique
with the ability to assess three-dimensional (3D) bone
structure in the peripheral bones with a voxel reso-
lution range of 63 - 246pum (SCANCO Medical.
XtremeCT, 2017). Although it remains primarily a

research tool, HRpQCT is gaining popularity and
clinical accessibility as a means to quantify bone deg-
radation in RA patients, with multiple studies report-
ing on the visual analysis of erosion number and size,
and user reliability (Fouque-Aubert et al., 2010; Stach
et al., 2010; Burghardt et al,, 2013; Nishiyama and
Shane, 2013; Kocijan et al., 2014; Paccou et al., 2014).
Several publications report positive results for semi-
automated algorithms capable of segmenting erosions
in patients with RA from cortical interruptions in the



COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING . 3

bone surface (Duryea et al., 2008; Burghardt et al,
2013; Topfer et al, 2014; Cervinka et al, 2015;
Duryea et al., 2016; Peters et al., 2017). These meth-
ods show good results in erosion identification and
quantification in images where erosions are easily
defined. However, current algorithms require user
intervention to identify an erosion by manually locat-
ing seed points or assisting in segmentation.
Additionally, quantifying erosion geometry presents
methodological challenges because it depends on the
subjective estimation of the original (missing) bone
surface. This becomes inaccurate in severely damaged
joint areas, or when periosteal bone develops adjacent
to erosions. Similar challenges are encountered when
measuring periosteal bone growths.

Quantifying deformities of the bone at the articular
joint surface is critical to understanding the extent of
disability as a result of skeletal deformity. Thus, a
goal of this research is to take advantage of HRpQCT
to develop objective measurement methods that have
been previously unavailable. Patient outcomes may be
improved with more sensitive and less subjective
measures of joint damage. The long-term goal is to
improve the treatment of arthritic diseases by provid-
ing accurate, objective and clinically relevant diagnos-
tic tools that may be used to quantify and predict
disease progression.

Here, we present a new approach using HRpQCT
images to detect and quantify diseased bone surface
comprised of both erosions and periosteal bone
growth. The algorithm is designed to predict the prior
healthy bone surface from the geometry of a diseased
bone surface using a probabilistic approach and a set
of healthy bone surfaces as a reference. We assessed
the performance of the algorithm by creating artificial
erosions and periosteal bone growths. Finally, we
applied the algorithm to images from a pilot group of
patients with PsA and RA. We report potentially clin-
ically relevant outcome measures between diseased
cohorts and a healthy cohort, highlighting the algo-
rithm’s capability in objectively detecting diseased
bone surface in a repeatable manner.

2. Methods
2.1. Subjects and image acquisition

In vivo images of the second metacarpophalangeal
(MCP) joint, including the metacarpal head and pha-
langeal base, were acquired in pilot cohorts of healthy
subjects, patients with RA and patients with PsA
using HRpQCT (XtremeCT, Scanco Medical AG,
Briittisellen, Switzerland). Images were acquired on

the predominantly affected hand of 17 RA patients
(age 61+ 18years, 12 females, 5 males) and 17 PsA
subjects (age 60+ 18years, 7 females, 10 males) and
enrolled from the Rheumatology Division at University
of  Massachusetts Memorial Medical  Center
(UMMMC). Each patient had radiographic confirm-
ation of erosions and periosteal bone formation on the
imaged hand. The healthy cohort consisted of 12 sub-
jects (age 52+ 14vyears, 7 females, 5 males), devoid of
known immuno-deficiencies. Each image set consisted
of 330 slices with 82pum isotropic voxel size, encom-
passing a length of 27 mm spanning the second MCP
joint. The total scan time was 8.5minutes, and the
associated effective radiation dose was 9 pSv. During
the scan, the hands and fingers were stabilized using a
combination of the manufacturer-supplied carbon fiber
cast and pieces of foam packed around the hand. This
study was approved by the Institutional Review Boards
at Worcester Polytechnic Institute and the University
of Massachusetts Medical School. All participants pro-
vided written informed consent prior to participation.

2.2. Surface transformation algorithm
2.2.1. Overview

The algorithm to calculate bone surface abnormalities
is summarized in Figure 1. It consists of the following
steps: (1) the phalangeal base and metacarpal head
are segmented from the HRpQCT images and con-
verted into 3D surface meshes; (2) Corresponding
anatomical points are applied to the cohort of healthy
surfaces; (3) A generic healthy reference surface of
the MCP joint is generated by averaging the corre-
sponding points on the healthy surfaces; (4) The
healthy reference surface is non-rigidly transformed
to the shape of each diseased patient surface, while
retaining the original healthy features; (5) periosteal
bone growths and erosions are defined as regions
where the surface of the diseased bone deviates from
the transformed healthy bone surface.

2.2.2. Three-dimensional surface generation

HRpQCT images were converted to three-dimensional
(3D) surface meshes (Mimics & 3Matic, Materialise
NV, Leuven, Belgium, 2015) in preparation for sur-
face-to-surface registration. To accomplish this, a
binomial blur filter was first applied to each CT slice
to reduce noise. Next, voxels representing bone were
identified using a fixed density threshold of 0.41g/
cm’. The internal trabecular region was excluded in
this analysis.
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A) The reference healthy surface is non-linearly transformed into the shape of the (B

) diseased bone surface using CPD.

The transformed surface is now considered the (C) estimated healthy surface of the original dlseased surface.

2.2.3. Scaling and orienting surfaces

To define a common analysis region, all surfaces were
equivalently proportioned based on bony landmarks.
This served to reduce variability between subjects of
different sizes by normalizing inter-subject bone vol-
ume and spatial position.

2.2.4. Creating a healthy reference surface

A single “generic” healthy reference surface was pro-
duced from the 12 healthy subject surfaces. Each
healthy surface was characterized by M = 10,000 verti-
ces (average vertex point-to-point resolution of
0.28 mm) positioned at corresponding anatomical loca-
tions. This allowed for a point-to-point correspond-
ence between each n - {number of healthy surfaces} in
the form of comparable point sets (Bookstein, 1997;
Heimann et al, 2006; Bredbenner et al., 2014; Van
Haver et al., 2014). This was carried out by mapping
the dense, template point set Y = (y;, ..., ym) in R3 to
each healthy surface point set X = (x;, ..., X,,) using a
non-rigid, modified Coherent Point Drift (CPD) trans-
formation (Myronenko et al., 2007; Myronenko and
Song, 2010). The CPD algorithm is a probabilistic
Gaussian mixture model (GMM), non-rigid transform-
ation technique used to register two dissimilar point
sets (Yuille and Grzywacz, 1988; Myronenko et al.,
2007). The result was a single healthy reference surface,
generated by averaging the Euclidean space between all
the corresponding transformed template point sets Y’
to get a single average point set, such thit‘;,,

Healthy Reference Surface =
i=1, ..., n

', where

2.2.5. Estimating healthy surfaces from diseased
patient scans

To differentiate between healthy and diseased surfaces,

the healthy reference surface was non-rigidly

transformed to each patient surface mesh. The result
was a new bone surface with healthy features that had
similar size and geometry to the diseased surface. To
accomplish this, a CPD algorithm was adapted to warp
the reference healthy surface mesh (Figure 2A) into
the shape of each patient specific diseased surface
mesh (Figure 2B), while retaining the “healthy” fea-
tures. This allowed prediction of the geometry of a
patient healthy surface (Figure 2C) from the dis-
eased surface.

2.2.6. Quantifying surface deformity

We characterized surface deformity as the deviation
of the patient bone surface from the corresponding
predicted healthy surface. A negative distance repre-
sented bone erosion while a positive distance repre-
sented periosteal bone growth (Figure 3). These
distances, calculated over the entire surface, were used
to develop outcome measures, described below.

o Percentage surface area of periosteal bone
growth and erosion (%): The total bone surface
area determined to be “diseased” (i.e., comprised
of abnormal erosions or growths) was represented
as a percentage of the total surface area. A thresh-
old of 0.6 mm was selected based on a sensitivity
analysis described in Section 3.3, where distances
exceeding this threshold were considered
“diseased”. This outcome was further categorized
into erosion and periosteal bone growth.

e Number of independent erosion sites and bone
growths: The number of standalone erosion sites
and periosteal bone growths were tallied for
each surface.

e Maximum positive and negative distance
between surfaces (mm): Maximum periosteal
bone growth height (positive distance) and erosion
depth (negative distance) were expressed in mm.
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Figure 3. Cross-sectional profile of metacarpophalangeal joint with diseased surface (red) overlaid the corresponding predicted
healthy surface (blue). In Detail A, the graphic illustrates a negative distance between the predicted healthy triangulated surface
to the nearest diseased surface vertex in the normal direction of the respective triangle plane (erosion). Similarly, Detail B shows

an example of a positive distance (periosteal bone formation).

2.3. Sensitivity analyses

The outcome measures depend on fitting an appropri-
ate generic healthy surface to the diseased bone and
then detecting differences between the two surfaces.
We expected that even healthy joints would contain
surface variations, due to age-related changes and bio-
logical variation. The goal of the sensitivity analyses
were to (1) assess the degree to which our generic
healthy surface was truly “generic”, in the context of
our small healthy subject sample, and (2) to systemat-
ically determine the minimum size for a feature to be
considered “abnormal” that maximized algorithm sen-
sitivity and specificity.

2.3.1. Making the generic healthy surface

To determine the degree to which the calculated
parameters depended upon the specific reference sur-
faces used to generate the generic healthy surface, we
conducted a sensitivity analysis using three randomly
selected diseased surfaces. First, we determined how
many healthy surfaces were required to create a gen-
eric healthy reference surface. To accomplish this, we
quantified the maximum periosteal bone growth
height for each diseased surface as the number of
healthy surfaces used to create the generic surface
increased from 2 to 12. Next, to determine the extent
to which the specific healthy surfaces included within
the generic surface affected the outcome measures, we
selected 9 different combinations of 3 healthy surfaces
to create different generic surfaces. These were each
used to quantify the maximum periosteal bone growth
height for each diseased surface.

Ove icte
0%+ ®
L]
A
§ ]
@ y .’ *
.Ué’ -20% + :‘
" ®
g ofo o
‘A A
-40% + ® A
*
%
Und ictec
oy, L
Actual deformity value (mm)
@5Single erosions ® Single growths
@ Multiple erosions & Multiple growths
A Erosions combined with growths & Growths combined with erosions

Figure 4. The relative error between the predicted values and
the actual values of the deformity measurements represented
as a percentage of the size of the deformity. Relative error =
(predicted value — actual value)/actual value %. Erosion depths
are illustrated in blue and periosteal bone growths in red.

2.3.2. Detection of erosions and periosteal growths

To quantify the accuracy and limitations of the algo-
rithm, a series of artificial erosions and periosteal
bone growths with known dimensions were manufac-
tured on five different healthy surfaces. Algorithm-
based measures were compared to the actual known
values. Three sizes of erosion were constructed as ‘U’
shaped voids, and three sizes of periosteal growth
were constructed as convex domes. Dimensions and
shapes were selected based on clinical reports (Dghn
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et al., 2007; Emond et al., 2012; Kocijan et al., 2014;
Ventura-Rios et al, 2016; Ibrahim-Nasser et al.,
2017). Erosions ranged from 1.9 to 4.9mm in depth,
and periosteal growths ranged from 0.6 to 1.9mm in
height. All types of artificial erosions and growths
were placed individually and in combination on the
healthy surfaces, resulting in 90 different simulations.
We assessed: (1) the ability to detect an erosion or
growth, by systematically varying the cut-off thresh-
old. This was the minimum distance between surfaces
to be considered an erosion or growth and was deter-
mined from the average Youden’s Index of the sensi-
tivity and specificity plots. (2) The accuracy of
erosion depth calculations. This was calculated as the
root mean squared error (RMSE) of the measured
versus actual depth or height. (3) The overall fit of
the predicted healthy surface onto a given specific
surface. Overall fit was expressed as the mean dis-
tance between the predicted and actual surface, in
those regions without artificial erosions and growths.

2.4. Application to patient cohort

After determining the best performance parameters
from the sensitivity analyses, the algorithm was
applied to the healthy and patient cohorts. One way
ANOVA was used to compare outcomes between
groups. Post hoc t-tests with Bonferroni corrections
were used to detect between-group differences. To
determine the degree to which our outcome measures
were associated with disease, stepwise discriminant
analysis was used to blindly classify two mixed
groups: 12 healthy plus 17 RA patients, and 12
healthy plus 17 PsA patients.

3. Results
3.1. Sensitivity analyses
3.1.1. Making the generic healthy surface

The surface matching algorithm was not very sensitive
to either the number of surfaces used to create the
generic healthy surface, nor the specific healthy surfa-
ces used. When the number of surfaces used to create
the generic healthy surface was increased from 2 to
12, maximum periosteal growth for the diseased sur-
faces varied <129 pm. Similarly, when different com-
binations of healthy surfaces were used to create the
generic healthy surface, maximum periosteal growth
varied <260 pum. Additional details are included in
the supplemental data.

3.1.2. Detection of erosions and periosteal growths

A cut-off threshold of 0.6 mm was able to detect both
erosions and periosteal growths with 87.5% sensitivity
and 86.8% specificity. This was used for all subse-
quent calculations. Overall, the algorithm predicted
erosion depth more accurately than periosteal bone
growth height (Figure 4). Erosion depth RMSE was
4+3% of the actual value, corresponding to an aver-
age precision error of 50 pm. The heights of periosteal
bone growths were predicted to within 20 +13%, cor-
responding to an average precision error of 210 pm.
Most deformities were slightly under-predicted. The
algorithm was best at measuring deep, narrow ero-
sions, and worst at measuring wide, gradual periosteal
growths. Overall fit between surfaces was excellent,
with an RMS distance of 0.08 mm between the gen-
eric-fitted surface and the non-modified portions of
each healthy surface.

3.2. Application to patient cohort

The algorithm objectively illustrated areas of abnor-
mal bone degradation and growth (Figure 5). In the
metacarpal head, patients with PsA and RA had max-
imum positive distances (periosteal bone growth) that
were >55% greater than the healthy cohort. Similarly,
PsA and RA patients had maximum negative distan-
ces (erosions) for both the metacarpal head and pha-
langeal base that were >85% greater than the healthy
cohort (Table 1).

Patients with PsA had significantly greater percen-
tages of eroded bone surface area that compared to
the healthy cohort (Table 1). The algorithm also
detected significantly more erosion sites on the meta-
carpal head in both PsA and RA patients. Finally, the
maximum depth of erosions was significantly greater
in both the metacarpal head and phalangeal base of
RA patients, and the phalangeal base of the
PsA patients.

The outcome measures were able to discriminate
healthy versus RA patients better than healthy versus
PsA patients. At the metacarpal head, erosion depth
and average surface matching successfully discrimi-
nated 96.6% of healthy and RA patient surfaces from
each other (11/12 healthy and 17/17 RA surfaces). At
the phalangeal base, a combination of erosion depth,
periosteal growth height, percent surface eroded and
surface variability correctly classified 100% of healthy
and RA patient surfaces. At the metacarpal head of
healthy and PsA patients, the number of erosion sites
and average surface matching discriminated 86.2%
correctly (12/12 healthy and 13/17 PsA surfaces).
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Figure 5. The visual outputs of the algorithm showing areas of erosion (blue) and periosteal bone growth (red). The heat map
represents the distance between the subject bone surface and the corresponding predicted healthy surface. Two examples of dis-
eased surfaces are illustrated in (A) and two examples of healthy surfaces in (B). The prevalence of erosion and bone growth is
noticeably observable. The dashed ellipse in the top right panel illustrates a large ridge of abnormal periosteal growth.

However, at the phalangeal base, erosion depth alone
was selected, which discriminated 72.4% of surfaces
correctly (12/12 healthy and 9/17 PsA surfaces).

4. Discussion

Here, we developed an objective algorithm to quantify
three-dimensional bone surface abnormalities based
on HRpQCT images. The algorithm uses a generic
healthy surface to predict the healthy surface topology
of diseased bone. This allows for visualization and
quantification of surface changes within the affected
joint by defining areas of erosion and periosteal bone
formation. We evaluated the sensitivity of these meas-
ures to input parameters, and compared sets of out-
come measures in healthy subjects and patients with
both RA and PsA.

Our data show that algorithm is not particularly
sensitive to the number of, or specific healthy surfaces
used to generate the generic healthy reference surface.
Based on this data, and our assumption that including

more healthy surfaces in the generic model would
improve generalizability, all 12 healthy surfaces were
used. Nevertheless, this number is relatively small
compared to other population-based bone geometry
atlases, and surface fitting may be improved by using
age- or sex-specific references in the future.
Algorithm performance accuracy and limitations were
assessed by measuring artificial erosions and perios-
teal growths. Based on these data, a cut-off value of
0.6 mm was identified to best detect an unknown and
mixed set of erosions and periosteal growths. The
algorithm had difficulty in detecting and measuring
periosteal bone growths because it is difficult to iden-
tify convex growths on an already convex bone sur-
face. However, algorithm accurately identified erosion
sites and growths adjacent to one another, which has
clinical relevance especially in PsA patients. The sen-
sitivity and specificity for detecting the presence of
both erosions and periosteal growths in our test set
was excellent (nearly 90%), and both features could
be detected with an accuracy of 210 um.
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Table 1. Results comparing mean outcome measures of healthy subject surfaces to PsA diseased subject surfaces and RA dis-
eased subject surfaces. Differences between PsA and RA surfaces are included. The outcome measures are reported as mean val-

ues + standard deviation.

Metacarpal results

Phalangeal base results

Healthy PsA diseased RA diseased Healthy PsA diseased RA diseased
Outcome measure surface surface surface surface surface surface
Mean distance between —0.07 £0.04 —0.05+0.07 —0.02 £0.06 —0.04+£0.03 —0.04+0.04° —0.01+ 0.02a,b
surfaces (mm)
Maximum positive distance 0.60+0.13 0.93+0.45 0.94+0.51 0.66 +0.05 0.87£0.53 0.84+0.36
between surfaces (mm)
Maximum Negative distance —0.71+0.28 —1.3140.65 —1.62+1.11° —0.65+0.05 —1.34+0.68° —1.44+0.82°
between surfaces (mm)
Average Standard deviation 0.22+£0.05 —0.32+0.17 0.28+0.19 0.26+0.03 0.30+0.20 0.21+0.10

of distances between
surfaces (mm)
Percentage surface area
of periosteal bone
growth (%)
Percentage surface area
of erosions (%)

0.1% = 0.2% 3.8% + 6.4%

0.6% + 1.2% 6.7% + 8.7%"

Number of independent 08+1.1 29+27°
erosion sites
Number of independent 09+1.0 45+35

bone growths

1.5% + 2.4% 0.4% =+ 0.5% 3.0% * 5.3% 1.2% + 2.8%

2.8% * 3.4% 0.2% + 0.3% 4.9% + 7.2%° 1.7% + 3.2%

35+39° 11408 19+22° 1.9+3.0

45+44 0.7+0.7 40+3.5 24+20

*Significant difference (p < .05) for outcome measures between PsA and RA diseased subject surfaces.
bSignificant difference (p < .05) for outcome measures between healthy and diseased surfaces.

Several of the outcome measures have clinical rele-
vance. Specifically, erosion depth was consistently and
significantly greater in both patient groups compared
to the healthy cohort. Other measures may also be
important, although the present proof-of-concept
study was not powered to detect smaller, but clinically
relevant, differences. We found that a combination of
erosion depth, number of erosion sites, periosteal
growth height, percent surface eroded and surface vari-
ability could blindly discriminate between healthy and
diseased bony surfaces. Based on these features, the
algorithm was better able to discriminate RA than PsA
versus healthy subjects. The present group of patients
with PsA had bone surfaces that included a variable
mix of erosions and abnormal periosteal growth,
whereas the patients with RA had predominantly ero-
sions. Surface area based outcomes are a novel way to
interpret and further diagnose articular bone surfaces
affected by PsA and RA. Further validation of these
surface features, especially association with clinical
markers of disease severity, is needed to fully under-
stand their potential clinical relevance and utility.

The present algorithm compares the diseased sur-
face to an estimated healthy surface to objectively
quantify differences in surface morphology. This gen-
eral approach is frequently used during surgical plan-
ning for unilateral deformities, in which the intact/
healthy limb is imaged and mirrored onto the dis-
eased/injured limb (Vlachopoulos et al., 2016). In the
case of inflammatory arthritis, both hands may be
affected and previous images may not be available.
Here, we address this problem by predicting the

geometry of a healthy bone surface from the geometry
of the diseased bone surface. This healthy surface can
serve many purposes in understanding disease pro-
gression and quantifying joint changes. Our algorithm
does not require human intervention during the
image registration process and is inherently an object-
ive method to produce outcome measures. This tech-
nique could be used in conjunction with other
published algorithms to initially detect bone abnor-
malities and define the original healthy surface top-
ology for further analyses of the diseased geometry.
Using  HRpQCT imaging, several groups have
established metrics for quantifying cortical breaks
(Topfer et al., 2014; Peters et al., 2017; 2017), erosion
depth (Topfer et al., 2014; Barnabe et al., 2016) and
volume (Topfer et al., 2015) for individual erosions in
patients with RA (Stach et al, 2010; Finzel et al,
2013; Paccou et al, 2014) and PsA (Ory et al., 2005;
Kocijan et al., 2015). Our results support the rele-
vance of these measures, since maximum erosion
depth and periosteal growth height were discrimina-
tors between healthy and diseased surfaces. Defining
erosions or periosteal bone growths covering large
areas and that have complex geometries, has been a
consistent challenge to this research (Figure 5). This
highlights a limitation of using erosion site counts as
a metric of bone destruction; it may be necessary to
use the parameter in conjunction with other out-
comes. Here, we identified and assessed the usefulness
of several candidate measures that would represent
the overall deformity of a bone surface. However, the
point-to-point distances that are calculated with the
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present algorithm could be used to calculate add-
itional measures (e.g. spatial locations of specific fea-
tures), which may have greater clinical relevance or
serve as useful research tools.

Our work builds upon that of others to quantify
periosteal growth for the first time, and to increase
objectivity in defining diseased bone surface.
Previously reported techniques analyze image data on
a slice-by-slice basis (2D) and require human interven-
tion to isolate erosion sites (e.g (Topfer et al., 2014)).
These methods have limitations related to subjective
identification of erosion sites, the expertise required,
and difficulty in analyzing severely deformed bones.
Semi-automated methods generally require a smooth
cortical surface surrounding the erosion site to detect
a sharp change in the gray scale gradient (e.g (Duryea
et al., 2008)). These methods work well in cases where
erosions are sparse, obvious, and the erosion cavity is
smooth with minimal fenestration into the trabecular
region. However, on joint surfaces where erosions are
not well defined, are numerous or are adjacent to peri-
osteal bone formation, as in PsA, it becomes very diffi-
cult to place seeding points for pseudo-automated
algorithms to detect these bone abnormalities. Our
algorithm fills this critical gap by automating the
detection of abnormal sites. Although the algorithm
was validated using HRpQCT images in RA and PsA
patients, HRpQCT remains primarily a research tool
that is not widely available. It is likely that these meth-
ods can be adapted to detect bone surface abnormal-
ities within other anatomic sites, populations, and
using alternative 3D imaging modalities (e.g. CT or
MRI). In these cases, additional validation would be
required to account for differences in feature size and
imaging resolution.

Our proof-of-concept study has several limitations.
First, we used a small sample of subjects to establish
and tune the algorithm. Although the outcome meas-
ures calculated here were different between diseased
and healthy groups, these specific measures may not be
appropriate for all types of inflammatory arthritis and
additional validation is needed. Second, our healthy
control cohort was younger than the diseased cohort,
and additional research is required to more robustly
define appropriate healthy reference surfaces. It is likely
that the specific values we identified for parameters
such as cut-off values, sensitivity, and specificity for
detecting features may require adjustment, once a large
healthy reference database is obtained. Similarly, it may
be necessary to adjust parameters for other anatomic
locations, applications, or disease states. Unlike other
work in this area, the present algorithm is presently

limited to detecting surface features, and may not
accurately quantify erosions that reside within the tra-
becular structure but have minimal cortical breaks.
However, our algorithm was quite robust and demon-
strated accuracy that was comparable to our scan reso-
lution. Finally, the data reported here are cross-
sectional in nature, and the degree to which progres-
sion of surface deformity can be measured over time is
not known. Despite these limitations, our algorithm
was able to successfully facilitate visualization of, and
report objective metrics related to, bone surface
deformity in individuals with RA and PsA.

In conclusion, we have developed and demon-
strated a method for objectively detecting and quanti-
fying surface feature abnormalities. This method
automatically detects and measures various clinically
relevant bony features, including those that previously
could not be measured via human input or automated
segmentation techniques. In our small pilot study, the
method was able to detect significant differences
between healthy and diseased groups, and was able to
discriminate blindly between these groups. With fur-
ther development and validation, this method may
serve as a unique diagnostic tool for monitoring dis-
ease progression, or to detect small changes in joint
surface in early disease. This algorithm will be useful
by itself and in conjunction with current clinical tech-
niques and research-based diagnostics for the evalu-
ation of patients with RA and PsA.
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