Evaluation of Greenhouse Gas Emissions in Eilat Rosalyn Bates, Samantha Marcil, David Schwartz

Climate Change In Israel

MAY 25, 2020, 6:43 AM

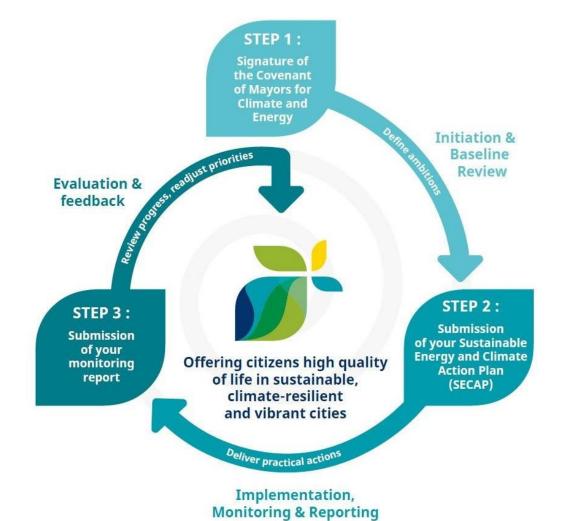
Long, intense and dangerous heat waves likely to become more common, expert says

But as the Mediterranean region warms 20% faster than the global average, an ambitious government roadmap, with 31 action points to help Israel adapt, remains without funding

By SUE SURKES

(Surkes, 2020)

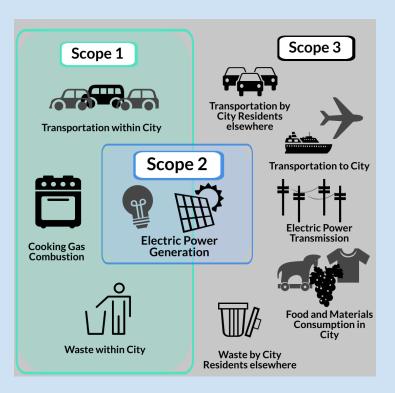
MAY 19, 2020, 7:34 PM


Deadly heat wave broils Israel, drives record electricity use

Temperatures soar into the upper 40s Celsius throughout the country; firefighters battle wildfires, rescue people from elevators; at least three deaths blamed on heat (Staff, 2020)

GLOBAL COVENANT of MAYORS for CLIMATE & ENERGY

THE WORLD'S LARGEST COALITION OF CITIES FIGHTING CLIMATE CHANGE



(Bertoldi, 2010)

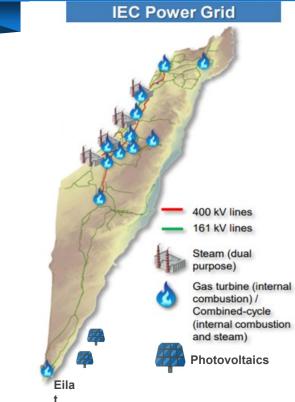
Project Goal

To evaluate progress towards a 20% reduction in GHG emissions since 2014

Emission Scopes

Emission Sources

Electric Power


Transportation

Waste

Emissions from Electric Power

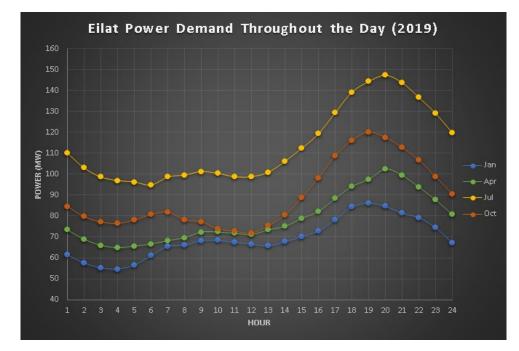
Emissions Factors

Year	Gram CO ₂ / net-kwh	Gram N ₂ O / net-kwh	Gram CH ₄ / net-kwh	Gram CO2eq/ net-kwh
2010	726	0.00899	0.00940	729
2011	733	0.00925	0.01021	737
2012	783	0.01030	0.01329	787
2013	700	0.00848	0.00936	703
2014	685	0.00860	0.00856	688
2015	693	0.00863	0.00881	696
2016	661	0.00767	0.00860	663
2017	639	0.00707	0.00864	641
2018	629	0.00680	0.00850	631
2019	642	0.00718	0.00865	645

IEC Environmental Report (2019)

IEC Investor Presentation (2019)

Algorithm:


Power Demand in Eilat

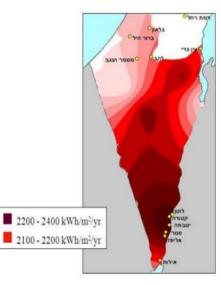
Power Supply from PVs

Power Supply from Fossil Fuels Σ Over every hour of the year

★ Emissions Factor (645 gCO₂eq/kWh)

Power Demand in Eilat

Rooftop Installations in Eilat



- 24,000 modules
- Area typically 1-0.0 m²/module
- Approximately 6.7 MW installed capacity

PVs in the Southern Arava

Ketura Sun Solar Field

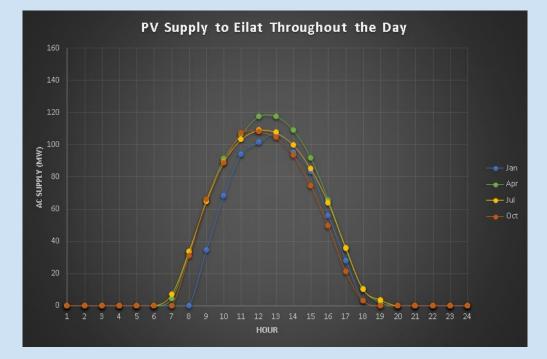
- Plentiful of solar insolation
 (over 2000 kWh/m²/year)
- Nearly 190 MW of PVs installed by 2019

Modeling Photovoltaics

- National RenewableEnergy Lab PVWatts
 - Meteorological

Database

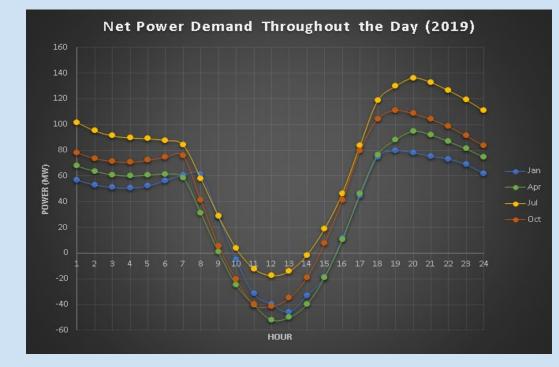
Predicts PV


```
performance
```

PVWatts[°] Calculator

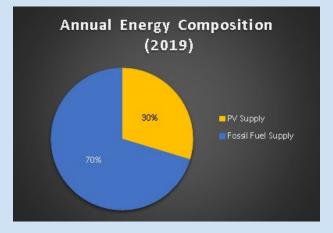
pvwatts.nrel.gov

PVWatts Results

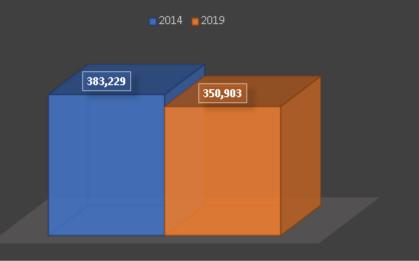


Production occurs during Assumptions: daylight hours ▶ 96% inverter efficiency Max output during mid-day

- 95% goes to Eilat
 Summer has longer daylight
 5% transmission losses
- Spring has greatest PV propeak


power

Comparing PV Supply to Demand



- Satisfies demand
 throughout most of the
 day
- Energy storage would allow Eilat to utilize excess production

Emissions Results from Power

CO₂EQ EMISSIONS (TONS)

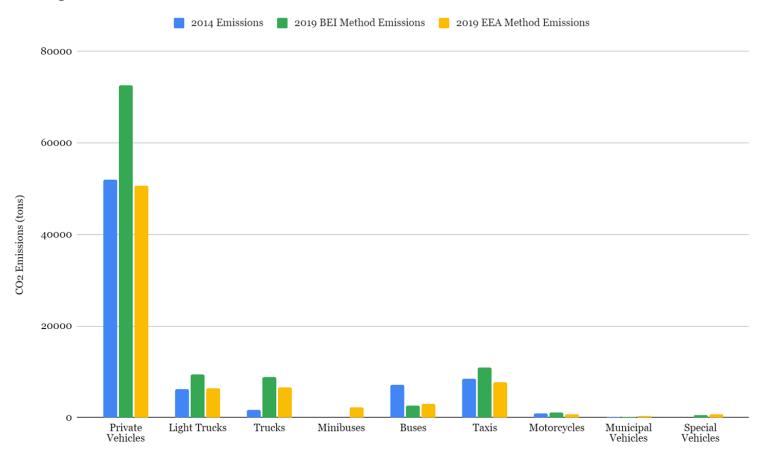
Transportation Data Collection

- Central Bureau of Statistics
- Municipality of Eilat
- Distance assumption
 based on BEI

Vehicle Category	Number of Vehicles	Total Annual Distance (km)
Private Vehicle	17,430	242,277,000
Light Truck	1,122	23,898,600
Truck	597	8,716,200
Minibus	44	2,204,400
Bus	55	3,162,500
Taxi	503	36,618,400
Motorcycle	1,617	11,642,400
Municipal Vehicles	12	121,915
Special Vehicles	33	597,300
Total:	21,413	329,238,715

Transportation Estimation Methods

Baseline Emissions Inventory


Vehicle Category	Emission Factor (g CO ₂ (eq)/km)
Private Vehicle	300
Light Truck	396
Truck	1011
Bus	820
Taxi	300
Motorcycle	100
Municipal Vehicle	847
Special Vehicle	847

European Environment Agency

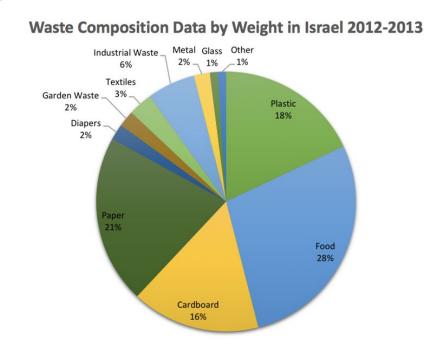
Vehicle Category	Fuel Consumed (g/km)	Emission Factor (g CO ₂ (eq)/km)
Private Vehicle	66	209
Light Trucks	85	269
Trucks	240	761
Minibus	331	1049
Buses	301	954
Taxis	66	209
Motorcycles	17	54
Municipal Vehicles	930	2948
Special Vehicles	392	1242

IPCCEmission Factors

Transportation Emission Results

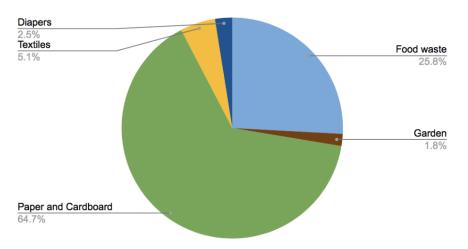
Vehicle Categories

78,469 CO₂ eq tons



Transportation Emission Reduction Measures

- Increased use of public transportation
- Hybrid/Electric vehicle use

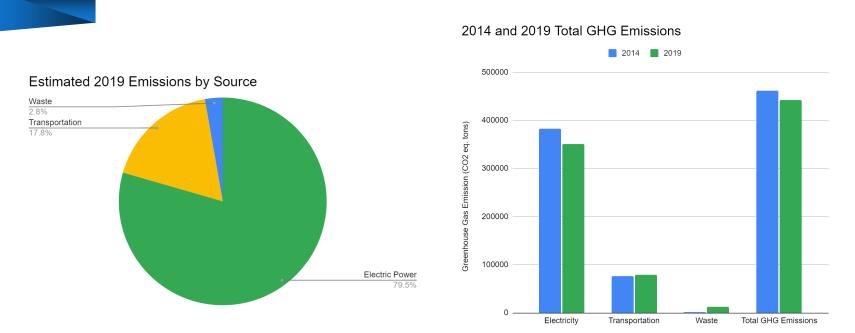

Municipal Solid Waste Methods

- First Order Decay Method
- \triangleright 70% of methane
 - recaptured
- ▷ Sources: Eilat
 - Environmental Unit, IPCC, EPA

Municipal Solid Waste Results

Composition Of Emissions by Waste Type

Туре	Total CO ₂ (eq) Emissions
Food waste	3,149
Garden	217
Paper and Cardboard	7,887
Textiles	626
Diapers	306


Total Waste Emissions: 12,185 @ Otons

Municipal Solid Waste Discussion

- Cannot make clear
 comparison to BEI waste
 emissions
- Data from 2015 still significant
- Make efforts to encourage recycling

Conclusions

Total: 441,558 CQeq tons

Thank you

We would like to thank each person that has made this project possible

- Our advisors, Isa Bar-On and John-Michael Davis
- Our sponsors, Assaf Admon and Elad Topel
- The Arava Institute

Thank you! Any questions?

