

A National Science Foundation Industry/University Cooperative Research Center

Experimental Study of Drying of Paper with Ultrasound Mechanism

Zahra Noori Prof. Jamal Yagoobi Prof. Burt Tilley

Sustainability Project Competition April 2022

dryingresearch.org Contact cardinfo@dryingresearch.org for more information Center Proprietary

©WPI

Energy consumption in papermaking machine World paper consumption Ventilation (hall) 6% World 6 % West-Europe 25 % Headbox Short 1% circulation 11% North America 34 % Press13% East-Europe section 4% Latin-America 3% Asia 3% **Dryer section** 69% Japan 25 %

dryingresearch.org For information contact: cardinfo@dryingresearch.org

Center Proprietary

 To save 36 millions of barrels of oil yearly in USA

 To save 4,000 Olympic-sized swimming pools of water yearly in USA

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

Objectives

Ultrasonic drying of paper

Ultrasonic drying of an over-saturated paper sample.

- ✓ Input power = 10 W
- ✓ Frequency = 1.7 MHz
- ✓ Transducer type = PZT mist generation transducer

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

Objectives

Ultrasonic drying of paper

Ultrasonic drying of an over-saturated paper sample.

Advantages of ultrasonic drying:

- Lower drying time
- Higher energy efficiency
- Lower temperature for drying (non-thermal)
- Improvement of product quality
- o It is a green technology

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

The major components in the experimental setup.

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

Results

Comparing the drying curves for **ultrasound drying** (1.725 MHz and 10 W.) and **conductive heating**.

The hot-plate unit used for conductive heating.

*Max standard deviation is 0.11.

Energy Factor (EF)

$$EF = \frac{(m_t - m_0) * h_{fg}}{\int LP(t)dt}$$

t: time

h: mass h_{fg} : latent heat of water *LP*: load power

Comparing the energy factors for different transducers and handsheet thickness = 0. 8 mm.

✓ Ultrasound drying can increase the energy efficiency by almost 40-90 times.

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

2³ Factorial Design

2³ Factorial design of experiments for hardwood

Experiment Number		Factors	
	Initial Moisture Content - DBMC (%)	Basis Weight (gr/m ²)	Refining Condition
1	119	152	Unrefined
2	149	152	Unrefined
3	119	304	Unrefined
4	149	304	Unrefined
5	119	152	Refined
6	149	152	Refined
7	119	304	Refined
8	149	304	Refined
9	134	228	50%R-50%UR
			5
M (PI For information	dryingresearch.org on contact: cardinfo@dryingreseard	ch.org

2³ Factorial Design

Total Drying Time (sec) = $C_0 + C_1 *$ (Initial MC) + $C_2 *$ (Basis Weight) + $C_3 *$ (Refining Condition) + $C_4 *$ (Initial MC) * (Basis Weight) + $C_5 *$ (Initial MC) * (Refining Condition) + $C_6 *$ (Basis Weight) * (Refining Condition) + $C_7 *$ (Initial MC) * (Basis Weight) * (Refining Condition)

R-Sq = 99.47%

Term	Coef.
Constant	108.111
Initial MC	-0.222222
Basis Weight (g/m2)	0.330409
Refining Condition	24.6667
Initial MC*Basis Weight (g/m2)	0.00146199
Initial MC*Refining Condition	-0.333333
Basis Weight (g/m2)* Refining Condition	-0.085526
Initial MC*Basis Weight (g/m2)*Refining Condition	0.00219298

In the above equation, since the Refining Condition is qualitative:

Unrefined pulp \longrightarrow Refining Condition = -1

dryingresearch.org For information contact: cardinfo@dryingresearch.org

Center Proprietary

Expected Impact and Future Plans

- ✓ Providing the Pulp & Paper industry with basic understanding of ultrasound mechanism for water removal under various operating conditions.
- ✓ Reducing the temperature and time for drying (energy savings).
- ✓ Improving the product quality.
- ✓ Contributing to the design of smart dryers.

Thank you for your attention :)

For more information contact: Zahra Noori znoori@wpi.edu

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

