PUBLICATIONS

BOOKS

C.C. Mei and B. Vernescu,
Homogenization Methods for Multiscale Mechanics,
World Scientific Publishing Co., 2010.

 


J. Carbonara and B. Vernescu (eds),
Creating Tomorrow’s Mathematics Professionals,
COMAP, 2013.

 


RESEARCH PAPERS

G. Panasenko, K. Pileckas and B. Vernescu Steady state non-Newtonian ow with shear rate
dependent viscosity in thin tube structure with no slip boundary condition, to be submitted.

G. Nika and B. Vernescu, Micro-geometry effects on the nonlinear effective yield strength response of magnetorheological fluids, submitted.

G. Nika and B. Vernescu, Homogenization for a multi-scale model of magnetorheological suspension, Z. Angew. Math. Phys. (2020) 71: 14. https://doi.org/10.1007/s00033-019-1238-4.

G. Panasenko and B. Vernescu, Non-Newtonian flows in domains with non-compact boundaries, Nonlinear Analysis, 183 (2019) pp. 214-229.

J. E. C. Lope, R. Sato and B. Vernescu, Well-posedness of steady state Navier-Stokes equations with slip boundary conditions, Applicable Analysis, 98, 1-2 (2019) pp. 295-309.

P. Donato, S. Mardare and B. Vernescu, Bingham flows in periodic domains of infinite length, Chin. Ann. Math. Ser. B, 39 (2), (2018) pp. 183-200.

S. Jimenez and B. Vernescu, Derivation of the Navier slip and slip length for viscous flows over a rough boundary, Physics of Fluids 29, 057103 (2017).

G. Nika and B. Vernescu, Rate of Convergence for a multiscale model of dilute emulsions with non-uniform surface tension, Discrete Cont. Dyn. Systems-S, 9, 5 (2016) pp. 1553-1564.

D. Giachetti, B. Vernescu and M. A. Vivaldi, Asymptotic analysis of singular problems in perforated cylinders, Differential and Integral Equations, 29, 5-6 (2016) pp. 531-562.

G. Nika and B. Vernescu, Dilute emulsions with surface tension, Quarterly for Applied Mathematics, LXXIV, 1 (2016) pp. 89-111.

S. Jimenez and B. Vernescu, Nonlinear Neutral Inclusions: Assemblages of Coated Ellipsoids, R. Soc. open sci 2015. 2: 140394.

G. Nika and B. Vernescu, Asymptotics for dilute emulsions with surface tension , Journal of Elliptic and Parabolic Equations, 1 (2015) pp. 215-230.

F. Maris, Y. Gorb and B. Vernescu, Homogenization for Rigid Suspensions with Random, Velocity-Dependent Interfacial Forces, J. Math. An. Appl., 420, 1 (2014) pp. 632-668.

F. Maris, B. Vernescu, Effective Slip for Stokes Flows Across Randomly Leaky Permeable Membranes, Asymptotic Analysis, 86, 1 (2014) pp. 17-48.

P. Donato, S. Mardare and B. Vernescu, Darcy Equations in an Infinite Strip: Do Limits Commute?, Differential and Integral Equations, 26, 9-10 (2013) pp. 949-974.

S. Jimenez, B. Vernescu and W. Sanguinet, Neutral inclusions: assemblages of spheres, Int. J. Solids and Structures, 40, 14-15, (2013) pp. 2231-2238.

B. S. Tilley, B. Vernescu and J. Plummer, Geometry-Driven Charge Accumulation in Electrokinetic Flows between Thin, Closely Spaced Laminates , SIAM J. Appl. Math., 72, 1 (2012) pp. 39-60.

F. Maris, B. Vernescu, Effective leak conditions across a membrane, Complex Variables and Elliptic Equations, 57, 2-4 (2012) 437-453.

D. Onofrei, B. Vernescu, Asymptotic analysis of second-order boundary layer correctors, Applicable Analysis, 91, 6 (2012) 1097-1110.

B. S. Tilley, B. Vernescu and J. Plummer, Electrokinetically-driven flows in swelling porous media, Proc. 16th National Congress of Theoretical and Applied Mechanics, USNCTAM 2010, June 27-July 2, State College, PA.

D. Onofrei and B. Vernescu, Error Estimates for Periodic Homogenization with non- smooth coefficients, Asymptotic Analysis, 54, (2007) 103-123.

D. Onofrei, B. Vernescu, G-convergence Results for some Spectral Problems Associated to the Neumann Sieve and their Applications, Multi Scale Problems and Asymptotic Analysis, eds. A. Damlamian et. al., GAKUTO International Series, Mathematical Sciences and Applications, 24, (2005) 249-260.

I. Ionescu, D. Onofrei, B. Vernescu, Gamma-Convergence for a Fault Model with Slip-Weakening Friction and Periodic Barriers, Quarterly for Applied Mathematics, LXIII, 4, (2005) 747-778.

D. Onofrei, B. Vernescu, Asymptotics of a Spectral Problem Associated to the Neumann Sieve, Analysis and Applications, 3, 1, (2005), 69-87.

B. Vernescu, Multiple-scale Analysis of Electrorheological Fluids, International Journal of Modern Physics B, 16, 17-18, (2002), 2643-2648.

B. Vernescu, Multiple-scale Analysis of Electrorheological Fluids, Electrorheological Fluids and Magnetorheological Suspensions, ed. G. Bossis, Proceedings of the 8th International Conference, Nice, France, 9-13 July, 2001, World Scientific, 2002, 733-738.

J. Perlak and B. Vernescu, The Effective Yield Stress in Electrorheological Fluids, Rev. Roum. Math. Pures et Appl., 45, 2, (2000), 287-299.

R. Lipton and B. Vernescu, Bounds for Cell Wall Permeabilities, IUTAM Symposium on Synthesis in Bio Solid Mechanics, eds. P. Pedersen and M. P. Bendsoe, Kluver Academic Publishers, (1999), 401-406.

B. Vernescu, Size and Double-Layer Effects on the Macroscopic Behavior of Clays Recent Advances in Problems of Flow and Transport in Porous Media, eds. J. M. Crolet and M. E. Hatri, Kluver, (1998) 45-58.

D. Apelian, J. L. Hoffman, B. Vernescu, Deep Bed Filtration of Molten Metals, Proc. International Conference and its Application in Science, Engineering and Industry,

H. I. Ene and B. Vernescu, On the Macroscopic Behaviour of Clays, Mathematical Modelling of Flow through Porous Media, eds. Bourgeat, Carrasso, Luckhaus, Mikelic, World Scientific, (1995), 138-147.

R. Lipton and B. Vernescu, Variational Methods, Size Effects and Extremal Microgeometries for Elastic Composites with Imperfect Interface, Mathematical Models and Methods in Appl. Sci., 5, (1995), 1139-1173,

R. Lipton and B. Vernescu, Critical Radius, Size Effects and Extremal Microgeometries for Composites with Imperfect Interface, J. Appl. Physics, 9, (1996), 8964-8969

R. Lipton and B. Vernescu, Two-phase Elastic Composites with Interfacial Slip, Zeitschrift fur Angewandte Mathematik und Mechanik, (ZAMM), 76, 2, (1996), 597

R. Lipton and B. Vernescu, Composites with Imperfect Interface, Royal Society of London Proceedings, 452, (1996), 329-358.

H. I. Ene and B. Vernescu, Viscosity Dependent Behaviour of Viscoelastic Porous Media, Asymptotic Theories for Plates and Shells, eds. R. P. Gilbert and K. Hackl, Pitman Research Notes in Mathematics 319, (1995).

R. Lipton and B. Vernescu, Homogenization of Two-Phase Emulsions, Proceedings of the Royal Society of Edinburgh, 124A, (1994) 1119-1134.

B. Vernescu, Asymptotic Analysis for an Incompressible Fluid Flow in Fractured Porous Media, Int. J. Engng. Sci. 28, 9, (1990), 959-964.

B. Vernescu, Viscoelastic behaviour of a Porous Medium With a Deformable Skeleton, St. Cerc. Mat. 4, 5, (1989), 423-440.

R. Stavre and B. Vernescu, Free Boundary Properties in non-Homogeneous Media Fluid Flow, Int. J. Engng. Sci. 27, 4, (1989), 399-409.

I. R. Ionescu and B. Vernescu, A Numerical Method for a Viscoplastic Problem. An Application to Wire Drawing, Int. J. Engng. Sci. 26, 6, (1988), 627-633.

R. Stavre and B. Vernescu, The Free Boundary Problem for the Anisotropic Dam, Arch. Mech., 40, (1988), 455-463.

R. Stavre and B. Vernescu, A Free Boundary Problem in Fluid Mechanics, Proc. Conf. Diff. Eqs.} Cluj-Napoca, (1985).

I. R. Ionescu, I. Molnar, and B. Vernescu, A Finite Element Model of Wire Drawing. Variational Formulation and Numerical Method Rev. Roum. Sci. Tech. Mech. Appl. 30, 6, (1985), 611-622.

H. I. Ene and B. Vernescu, Homogenization of a Singular Perturbation Problem, Rev. Roum. Math.Pures et Appl., 30, 10, (1985), 815-822.

R. Stavre and B. Vernescu, Incompressible Fluid Flow through a non-Homogeneous and Anisotropic Dam, Nonlinear Analysis TMA 9, 8, (1985), 799-810.

B. Vernescu, On the Convergence of Functionals` Minimum Points, Rev. Roum. Math.Pures et Appl., 30, 8, (1985), 685-692.

MATHEMATICS EDUCATION

J. Carbonara, B. Vernescu, Science Master’s Programs in Mathematical Sciences, Creating Tomorrow’s Mathematics Professionals, J. Carbonara and B. Vernescu (eds.), NPSMA Workshop, Niagara Falls, NY, October 11-13, 2011, pp vii-xv, 2013.

B. Vernescu, The Vertical Integration of Industrial Mathematics – the WPI experience, Educational Interfaces between Mathematics and Industry, A. Damlamian et. al. (eds.), ICMI Study Series, Springer, vol 16, pp 253-260, 2013.

B. Vernescu, The Vertical Integration of Industrial Mathematics- the WPI experience, Proceedings EIMI 2010, Lisbon, Portugal, April 19-23, A. Araujo, A. Fernandez, A, Azevedo and J. F. Rodrigues (eds).

D. Berkey and B. Vernescu, A Model for Vertical Integration of Real-World Problems in Mathematics, Proceedings of the 2007 ASEE Annual Conference, 2007.

A. C. Heinricher and B. Vernescu, How Can Mathematics Help – Mathematicians at Work Today, Pithagorean Review, Mu Alpha Theta on-line Journal, 2002.

B. Vernescu and A. C. Heinricher, Research Experience for Undergraduates in Industrial Mathematics and Statistics at WPI, Proceedings of the Conference on Summer Undergraduate Mathematics Research Programs, AMS, Providence, Rhode Island, 2000, J. A. Gallian ed.